Dynamics of functional and effective brain connectivity better predicts disease state compared to traditional static connectivity
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Introduction: It is well acknowledged that functional connectivity (FC) in the brain obtained from
resting state fMRI dynamically changes with time [1-4]. Further, it has been shown that dynamic R
changes in FC [5] and effective connectivity (EC) [6] are relevant to disease processes. However,
an outstanding question that remains is whether dynamic information from FC and EC provide
additional sensitivity to underlying brain pathologies over and above that obtained by their static
counterparts? Here, we provide answers to these questions by demonstrating that information
from temporal variations in FC and EC provides better accuracy for classifying subjects with
PTSD (post-traumatic stress disorder) from healthy controls. Methods: Individuals who were
diagnosed with PTSD in the wake of the 2008 Wenchuan earthquake, Sichuan, China were
recruited. Resting state fMRI data consisted of 99 runs from 76 healthy people and 146 runs from
73 PTSD patients. After standard preprocessing, mean time series from 190 functionally
homogenous brain regions identified previously [7] were obtained. Dynamic FC (DFC), dynamic
EC (DEC), static FC (SFC), and static EC (SEC) were computed between all possible pairs of
regions. For DFC, we employed sliding windowed Pearson’s correlation with window length
determined by stationarity assessed through augmented Dickey-fuller test (ADF test). For SFC,
Pearson’s correlation calculated from the entire time series was used. For DEC, we employed a
multivariate dynamic Granger causality (DGC) [8] model based on a time-varying autoregressive
model embedded with a Kalman filter, while for SEC, correlation-purged Granger causality
(CPGC) [9], the static counterpart of DGC, was adopted. In addition to the traditional SFC and PR
SEC, the variance of DFC and DEC metrics over time were derived and input into four different o
classifiers for differentiating PTSD subjects from controls using each of the four metrics. Firstly, a P A
two sample t-test was conducted to filter out 1000 features that were most significantly different
between PTSD and controls. Next, these selected features were input into 4 different recursive
clustering elimination based support vector machine (RCE-SVM) [10] classifiers. Depending on ; J =y
the importance of a given feature to classification, the rank of features was obtained. RCE-SVM ; D o Sy s S
is iterative method and in each iteration, it eliminates clusters of features with least discriminative ™ rurr :
power and then classification accuracy is updated. Results and Discussion: The classification T
performances for all the 4 metrics are shown in Fig.1. Generally, the classification accuracy
increased with the removal of more uninformative features. However, for DFC and DEC,
removing features beyond a point decreased accuracy since informative features were also
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removed. Both dynamic metrics had significantly (p<0.05) better accuracy in all steps of the (C) SEC: PTSD>Control (D) SEC: Control> PTSD
RCE-SVM procedure compared to their static counterparts (the p values obtained by doing
one-sided t-test comparing classification accuracy from dynamic and static metrics were very — ; "= T o monn

f

small). Further, the peak accuracy obtained from dynamic metrics exceeded 90% while that
was not the case for static metrics. This proves that dynamics of FC and EC provides
additional sensitivity to underlying pathological processes over and above that obtained from
traditional static connectivities. Fig.2 presents the highest ranked features (connectivities, Tonple R

shown as paths) corresponding to peak accuracy, with most discriminative power. There ; (i e \ st
were substantially less number of paths of PTSD > control for DEC, than vice versa. For ; N o rempanen
DFC, all features were greater in controls and none in PTSD. Conversely, there were sonuRpEEh ] :
substantially more paths for which PTSD>control than vice versa, for SEC. Note there were
no significant SFC paths which were greater in controls than PTSD while many SFC paths
were stronger in PTSD than controls. These results support previous studies showing overall
hyper-connectivity in PTSD [11]. In addition, the results surprisingly show that PTSD subjects
had lower dynamic variability of both FC and EC implying that PTSD patients are prone to
engage in certain negative states characterized by hyper-connectivity for longer times and N
cannot easily dis-engage from that state. This attribute of brain networks in PTSD seems to

ontal $ke. Rt
| Frontal MidR

Temparal Pals Sup.R epferai P sup R
.

A
LI fFemporataie ‘ I
w - coit] |
- Occlpifal o R ootk i
i Decipital Sup R |

|
Occlpial ML)
# Calcarine
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o (o i‘gf‘rle‘ftlerr;/ (o Fig.2 Brain networks with top-ranked paths for predicting the diagnostic label of a given subject
- ) o with peak accuracy using FC & EC. The thickness and color of paths correspond to their rank from
DFC DEC e RCE-SVM (top rank: yellow, bottom rank: red). (A) and (B) show paths where variance of DEC for
s \ by controls is significantly less (A)/more (B) than PTSD. (C) and (D) show paths where SEC for
sezess) (29019 controls is significantly less (C)/more (D) than PTSD. (E) shows paths where SFC for controls is
- significantly less than PTSD. (p=0.05). (F) shows paths where variance of DFC for controls is
P significantly more than PTSD.
. predict their diagnostic state better than just general hyper-connectivity. This demonstrates the
o oo o clinical utility of the investigation of connectivity dynamics over and above the insights obtained
P-valup €= from traditional connectivity. References: 1. Chang et al, Neuroimage, 50(1): 81-98, 2010. 2. Handwerker et
al, Neuroimage, 63(3):1712-9, 2012. 3. Deshpande et al, Lecture Notes in Computer Science, 4091:17-24, 2006.
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