
   
Fig.1 Subject-optimized cardiac and   Fig.2 High-freq. (HF) and low-freq. (LF) cardiac and respiratory noise (p<0.05)   Fig.3. High-frequency (f>0.1Hz) cardiac  
respiratory response functions              top to bottom: HF cardiac, HF respiratory, LF cardiac, LF respiratory    content as a function of TR (p<0.05) 
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Target audience 
    This study is important in fMRI resting-state data analysis to correct the influence of low-frequency and high-frequency physiological noise.    
Purpose 
    The purpose of this study is to estimate both low-frequency and high-frequency physiological noise regressors and investigate the aliasing property of the high-
frequency cardiac waveform as a function of the sampling rate (TR). In particular, we would like to answer the following questions: How can smoothly-varying low-
frequency physiological noise regressors be derived using a penalization method and cross-validation? Is the probability density function of the signal associated with 
the high-frequency cardiac wave stationary for resting-state data? If so, do favorable subject-specific TRs exist where the aliasing property of the cardiac pulsations are 
predictable and do not overlap into the low-frequency BOLD range? How much of the physiological noise can be eliminated? To answer these questions, we performed 
a detailed analysis of the physiological noise sources and computed the aliasing properties of cardiac and respiratory noise at different sampling rates. Results were 
compared with a recent study1. 
Methods 

Imaging: Six normal subjects with previous fMRI experience (mean age 23) were scanned. Subjects were instructed to rest, keep eyes closed and be as motionless as 
possible. FMRI was performed in a 3.0 T Trio Tim Siemens MRI scanner (12-channel head coil, GRAPPA=2, 32 reference lines, TE=25ms, FOV=22 cm×22 cm, 14 
slices in oblique axial direction covering prefrontal cortex, brainstem and cerebellum, thickness/gap=3.0 mm/1.0 mm, resolution 64×64, BW=2170Hz/pixel, 180 time 
frames. For each subject 20 different data sets corresponding to 20 different TRs (700ms, 800ms, …, 2600ms) were collected. During EPI heart rate and respiratory rate 
were recorded using a pulse-oximeter and respiratory belt, respectively (sampling rate 50Hz).  

Analysis: High-frequency physiological regressors are computed from the externally recorded heart rate and respiratory rate using intensity normalization and time-
shifting where for each voxel the optimal shift is determined from the fMRI data using maximum correlation. To determine subject-specific low-frequency 
physiological response functions hC(t) and hR(t), we use an optimization technique with cross-validation. These physiological regressors are formed by 
XC(t)=CLF(t)*hC(t) and XR(t)=RLF(t)*hR(t) where CLF(t) is a function that desribes the change of the cardiac rate as a function of time and RLF(t) is a measure of the 
change of the respiratory volume per unit time. The new approach in obtaining the corresponding impulse response functions hC(t) and hR(t) is by using a family of 
established response functions1, adding orthogonal terms to make the response functions more general, adding a constraint that insures smoothness of the curvature 
(second derivative) of these functions, and finally determining the optimum curvature and all other unknown parameters by cross-validation. In particular, for the 
cardiac response function we use hC(t)= h(0)

C(t)+α d/dt  h(0)
C(t), where h(0)

C(t) is a sum of a Gamma function and a Gaussian function with unknown parameters 
{a1,…,a6} and α is an additional parameter to allow flexibility. Normalization of hC(t) eliminates one unknown parameter resulting in 6 free parameters that we 
collectively call x={a2,…,a6, α}. To determine all unknown parameters, we use a 2-step approach with cross-validation. For each voxel of data set 1, we compute the 
squared residual error η(x)=(y-Xb)’(y-Xb) according to the general linear model y=Xb+ε where y is the voxel time series, X the design matrix containing the 
physiological regressors with unknown values of the parameters x, and ε the residual. We then solve the optimization problem 
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where we explicitly include regularization parameters {λ, μ} to penalize the mean curvature of the physiological response function using the L1 norm. The optimum set 
of parameters xλ,μ is determined by cross-validation using a second data set. A similar procedure is used for determining the optimized parameters for the respiratory 
response function, based on a family of two Gamma functions plus derivative. 
Results     
     In Fig.1, the subject-optimized cardiac and respiratory response functions are shown, respectively, for all 6 subjects. For a typical subject we show in Fig.2 the 

regions in the brain that are mostly 
affected by the physiological noise 
sources (high-frequency cardiac 
activity (1. row), high-frequency 
respiratory activity (2. row), low-
frequency cardiac activity (3. row), 
and low-frequency respiratory 
activity (4.row)). In Fig.3 we have 
calculated the probability that the 
cardiac frequency aliases to a 
frequency range above 0.1 Hz and 
therefore does not overlap with the 
low frequency BOLD signal.  

Discussion 
     A particular focus of this research was to investigate if a subject-optimized TR can be chosen where the high-frequency cardiac rate does not alias into the low-
frequency BOLD range. This is indeed the case, as we have shown by computing the temporal SNR as a function of TR. Since the cardiac high-frequency activity was 
very stable for each subject during a 2h of scanning time, it is possible to predict where the cardiac frequency will alias to. Thus, by knowing the mean cardiac 
frequency and its standard deviation for each subject (for example from pilot studies), it is possible to choose an optimal TR to reduce aliasing of the high-frequency 
cardiac noise into the low-frequency BOLD range. This approach could have advantages for mapping activations of the brainstem or nearby spinal cord regions, which 
are inherently difficult to study with fMRI because of the large vibrations associated with the heartbeat. According to our calculations, the temporal SNR can be 
improved by about 40-50 in problem areas if an optimal TR is chosen. However, for the majority of grey matter voxels in the upper cortex, high-frequency cardiac noise 
is relatively absent.  
Conclusion 
     In summary, modeling of all four physiological noise sources can lead to significant improvements in fMRI resting-state data quality. The high-frequency cardiac 
noise is mostly associated with the brainstem, nearby spinal cord and larger blood vessels. The cardiac noise affecting the brainstem and other nearby regions can be 
efficiently eliminated for fMRI using imaging at subject-specific TRs where the high-frequency cardiac noise will not alias into the BOLD frequency range.     
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