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Target audience: Researchers interested in statistical modeling and analysis methods, as well as scientists and clinicians whose research focuses on detecting
signal changes in functional and structural brain images.

Purpose: Accurately determining the statistical significance of changes in brain images is one of the most critical procedures of functional neuroimaging.
Cluster-size tests (CST) have been widely adopted in fMRI data analysis to detect brain activation. However, most existing CST approaches, like the most
commonly used ‘original’ CST (OCST) proposed by Friston in 1994 [1] can only be used appropriately when the image is highly smoothed in the spatial domain.
While this improves sensitivity, it is at the expense of spatial specificity. Smith and his colleagues proposed a threshold-free cluster enhancement (TFCE) inference
method [2] that does not require spatial smoothing, but this method can only be used for group level analysis. We propose an improved 3D CST approach
combining both spatial extent and intensity threshold, named 3D SEe-IT, which is suitable for both subject- and group-level analyses and does not require spatial
smoothing. 3D SEe-IT is attractive because it maintains high sensitivity without spatial smoothness and, in turn, without extra spatial smoothing, it retains spatial
specificity.
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Fig. 1. The representative result of single-subject analysis. The result was detected
and p(m>k) based on a Gaussian random field is expressed as: by OCST and 3D SEe-IT methods at the significance level of 0.05.
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Methods: 20 unrelated pre-processed resting-state f/MRI (rfMRI) data from 3

the Human Connectome Project (http:/www.humanconnectome.org/data)
were used to simulate task-activation fMRI data. The ground truth activation
spatial pattern we used was the medial visual resting state network spatial
map [3]. For the evaluation of task analyses, we followed a strategy similar
to that implemented by Woolrich et al. (2001) [4] and Frederick et al. (2012)
[5] that utilized dummy paradigms to simulate task activation data. We used:
a boxcar design with a period of 161.28 s (20.16-s rest period alternated
with a 20.16-s activation period, repeated four times). The activation
intensity level used was 2% of the rfMRI data.

All data were analyzed using FSL. The First-level analysis was used to
generate the subject-level parameter estimate maps. All paradigms were
convolved with the default gamma hemodynamic response function. The
application of temporal high-pass filtering and pre-whitening were also
tested. Gaussian smoothing kernels of FWHM of 0, 1.5 and 3 voxels were
applied to all the images. The resulting parameter estimate maps were
further analyzed at the signal-subject level (using OCST and 3D SEe-IT)
and at the group level (using 3D SEe-IT and TFCE), respectively.
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Fig. 2. The result of group level analysis. The result was detected by 3D SEe-IT
and TFCE methods at the significance level of 0.05.
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Results and Discussion: Fig. 1 shows the single-subject level analysis
results. The cluster size thresholds of 3D SEe-IT were the same as OCST for
each smoothness level at the significance level of 0.05. As shown in the
results, OCST is conservative with no spatial smoothness. The performance of 3D SEe-IT is significantly better than OCST with low spatial smoothness (FWHM <
1.5 voxels). Fig. 2 presents the group level analysis results. The intensity threshold for 3D SEe-IT was 3.65 for each smoothness level. Results show that with a
suitable intensity threshold, 3D SEe-IT achieves slightly better sensitivity and specificity than TFCE at each smoothness level.

Conclusion: In this report, a reliable and effective improved cluster-size method was introduced and benchmarked for use in assessing significance in
three-dimensional functional images. Unlike the standard approach to CST, which requires heavy spatial smoothing, and TFCE, which can only be used for group
level fMRI data analysis, the 3D SEe-IT approach has a higher sensitivity for localizing activation regions for both single-subject and group level analysis without
the requirement of spatial smoothness.
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