DCE-MRI and DWI are Sensitive to Vascular Changes in Renal Cell Carcinoma Following Sunitinib Therapy

Dania Daye¹, Anil Chauhan¹, Sarah Englander¹, Thomas Ferrara¹, Colleen Redlinger², Naomi Haas², Hee-Kwon Song¹, Stephen Keefe², and Mark Rosen¹ Radiology, University of Pennsylvania, Philadelphia, PA, United States, ²Medicine, University of Pennsylvania, Philadelphia, PA, United States

Target Audience: Clinical scientists, MRI physicists, and tumor biologists interested in monitoring anti-angiogenic therapy in tumors. **Purpose:** To compare the ability of dynamic contrast-enhanced (DCE-)MRI and multi B-value diffusion weighted imaging (DWI) to delineate functional changes in renal cell carcinoma early after the initiation of sunitinib therapy.

Background: Anti-angiogenic agents such as sorafenib and sunitinib, are approved for therapy of renal cell carcinoma (RCC)¹⁻². DCE-MRI can document vascular changes in RCC after initialization of therapy, and pre-therapy DCE-MRI has been shown to be a biomarker of tumor response³⁻⁴. More recently, DWI has been used to characterize changes in RCC after anti-angiogenic therapy⁵. However, direct comparison between these MRI techniques for detecting therapy-induced changes in RCC is lacking. **Methods:** Ten patients with metastatic RCC underwent DWI and DCE-MRI at 1.5T before and early (26±7 days) after the start of sunitinib therapy. DWI was performed at four B values (0, 200, 500, and 800 sec/mm²). DCE-MRI was performed using large

sunitinib therapy. DWI was performed at four B values (0, 200, 500, and 800 sec/mm²). DCE-MRI was performed using large volume hybrid-radial imaging, with two second temporal resolution, with IV injection of 0.07 mmol/kg gadobenate. All visible tumors were manually segmented separately on DWI and DCE-MRI image sets by a single radiologist, blinded to time point (pre- or post-therapy). Tumors greater than 2.5 cm in diameter that could be identified on both imaging sets were included in the analysis. Tumor T1 values, DCE-MRI parameters (K^{trans} , k_{ep} , v_e , and v_p), and DWI parameters (ADC_{0-200} , $ADC_{200-800}$, F_p), were compared pre- and post-therapy by the Students t-test. Pearson correlations among DWI and DCE-MRI parameters were also evaluated.

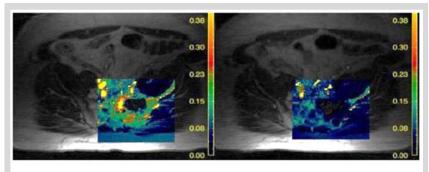


Figure 1: K maps of an RCC metastasis to the sacrum before (left) and after (right) sunitinib therapy, demonstrating the effects of anti-angiogenic therapy on tumor perfusion.

Results: A total of 21 tumors in ten patients were identified. Mean tumor T1 values decreased after therapy (1028 vs. 747 ms, p<0.0002). Significant changes in DCE-MRI parameters were seen (**Fig 1**), with mean declines in K^{trans} , k_{ep} , and v_p by 60%, 52%, and 63%, respectively after therapy (p<0.05 for all comparisons). ADC_{0.200} and F_p demonstrated post-treatment declines of 18% and 42%, respectively (p<0.05 for each), but there was no significant change in ADC_{0.200} (**Fig 2**). A strong positive correlation was seen between v_p and ADC_{0.200} before therapy (r=0.45, **Fig 3**) and more modest correlation after therapy (r=0.33). Positive correlations were also noted between v_p and F_p pre-therapy (r=0.28) and post-therapy (r=0.30). Modest positive correlations were also noted between changes in K^{trans} and F_p .(r=0.32) and changes in K^{trans} and ADC_{0.200} (r=0.25, **Fig 3**)

Discussion/Conclusion: While conventional ADC measures by DWI does not reveal changes in RCC tumor diffusion following anti-angiogenic therapy, analysis of multi-B-value DWI reveals changes related to tumor

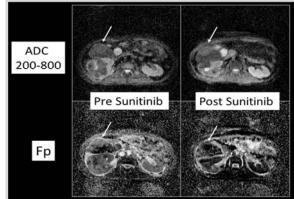


Figure 2: RCC metastasis to the liver (arrow) before and after sunitinib therapy. Functional DWI maps demonstrate the profound decrease in perfusion fraction (Fp), with more modest post-therapy elevation of diffusion (ADC $_{\rm 200-800}$).

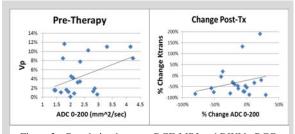


Figure 3: Correlation between DCE-MRI and DWI in RCC. L: Baseline ADC₀₋₂₀₀ vs. v_p. R: Change ADC₀₋₂₀₀ vs. K^{trans}.

devascularization, similar to those demonstrated with DCE-MRI. Multi-B-value DWI may prove to be a useful surrogate marker for anti-vascular tumor effects of targeted therapy in RCC. While DCE-MRI metrics of tumor vascularity undergo greater changes after therapy, DWI can be performed as a whole body technique without IV contrast, and may prove useful in monitoring therapy in RCC. **References:** 1) Escudier, et al., N Engl J Med. 2007;356:125–134. 2) Motzer, et al., N Engl J Med. 2007;356:115–124 3) Flaherty, et al., Cancer Biol Ther. 2008;7:496–501. 4) Hahn, et al., J Clin Oncol. 2008;26:4572–4578 5) Desar, et al., Cancer Imaging. 2011;11:259–265