

Does the presence of micro-vasculature alter the dispersion properties of shear waves? A rat aortic ring model at multiple frequencies using Magnetic Resonance Elastography.

Lauriane Juge^{1,2}, Anne Petiet³, Simon A. Lambert², Pascal Nicole², Simon Chatelin^{2,4}, Sabrina Doblas², Valerie Vilgrain^{2,5}, Bernard E. Van Beers^{2,5}, and Ralph Sinkus^{2,6}

¹Neuroscience Research Australia, Randwick, Sydney, NSW, Australia, ²CRB3-INSERM U773, University Paris Diderot, Paris, France, ³IFR02-CEFI, University Paris Diderot, Paris, France, ⁴Laboratoire Ondes et Acoustique / Institut Langevin, ESPCI, Paris, France, ⁵Radiology, Beaujon Hospital, Clichy, Paris, France, ⁶Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom

PURPOSE:

The presence of micro-obstacles can influence the propagation of the shear waves¹ and hence alter the apparent mechanical properties² as assessed via Magnetic Resonance Elastography (MRE). Disease or therapies can change the mechanical integrity and organization of vascular structures. If blood vessels represent a source for wave scattering (i.e represent micro-obstacles), MRE should be able to sense these changes. We follow the hypothesis that the presence of an underlying fractal-like stiff structure is capable of generating on the macroscopic scale apparent power law behavior in an otherwise non-dispersive material. To verify this hypothesis, multi-frequency MRE was performed to quantify alteration of the shear wave speed (C_s) due to the presence of vascular outgrowth using a rat aortic ring model. The model is based on the capacity of fragments of aorta to generate vascular outgrowth once cultivated in Matrigel³.

METHODS:

Eighteen fragments of rat aortas were immersed in Matrigel and cultivated. At 1 day (D1, n=6), 5 days (D5, n=6) and 8 days (D8, n=6) after their inclusion, the fragments were imaged at 7T (Bruker, Pharmascan). T₂-weighted images (113 μ m in plane resolution) and 3D steady-state MRE at different 5 frequencies (ω =100, 115, 125, 135 and 150Hz; 300 μ m in plane resolution) were recorded⁴. The average wave speed C_s was calculated within a ring of ~900 μ m thickness around each aorta and normalized to C_{s0} of the corresponding Matrigel. Finally, the frequency evolution was fit to the power law model⁵ $C_s \sim |\omega|^y$. After scanning, optical microscopy was performed on each fragment at D1, D5 and D8 to visualize the spatial organization of the outgrowths.

RESULTS:

At D1, no vascular outgrowth was visible while at D5 and D8 a rim of outgrowth was observed on the six fragments achieving an approximate thickness of 600 μ m and 850 μ m, respectively (Fig.1). Over the 5 frequencies, a general trend, showed an increase of the normalized C_s in the presence of the vascular outgrowth at D5 and D8 compared to D1 (without outgrowth). This increase is significant at 150 Hz ($P=0.0008$, Kruskal-Wallis test) (Fig.2). The study of the normalized frequency dependence from 100-150Hz revealed a power law behavior in the presence of vascular outgrowth at D5 and D8 ($y=0.06 \pm 0.07$, $y=0.10 \pm 0.04$, respectively) significantly different than that observed in the empty gel ($y=-0.02 \pm 0.07$, which is compatible with $y=0$; $P=0.013$, ANOVA test) (Fig.3).

CONCLUSIONS:

→ The vascular outgrowth acted as micro-obstacles that MRE was able to sense by measuring the shear wave speed C_s on the macroscopic scale.
→ MRE could provide valuable information about changes in the micro-structure of biological tissue and especially blood vessels.

→ Frequency dependence compatible with power law behavior is observed at D5 and D8. → The dispersion properties of shear wave could represent a novel structural imaging biomarker of vasculature.

CLINICAL IMPACT:

As shown recently, anti-vascular therapies are influencing the shear stiffness of tumors and the change is correlated to changes in vessel density⁶. Apparently, the slope of the shear wave speed is influenced by the presence/absence of vessels and has thereby the potential to provide additional information about the spatial organization of the vascular bed.

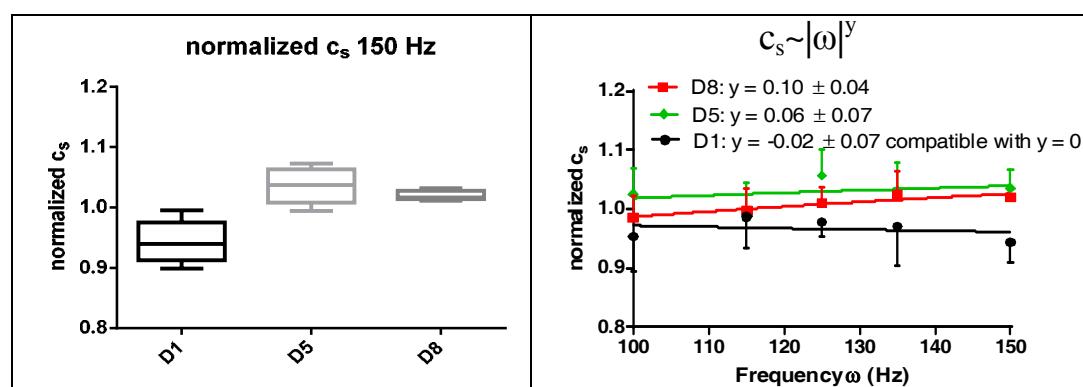


Fig.1: Left: Optical microscopy of one fragment of aorta at D1, D5 and D8. Right: Zoom of typical anatomical image and C_s maps at 150Hz obtained at different time points.

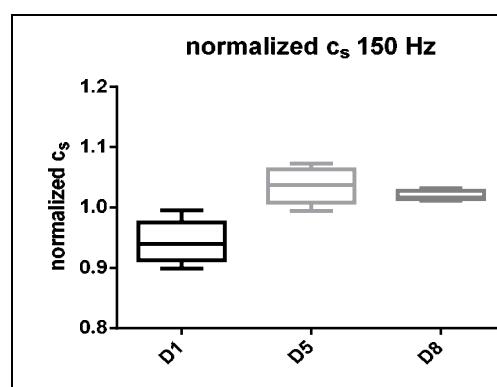


Fig.2: The vascular outgrowth generated by the aortic ring model at D5 and D8 altered the shear wave propagation by increasing the shear wave speed C_s compared to D1 (without vascular outgrowth) ($P=0.0008$, Kruskal-Wallis test).

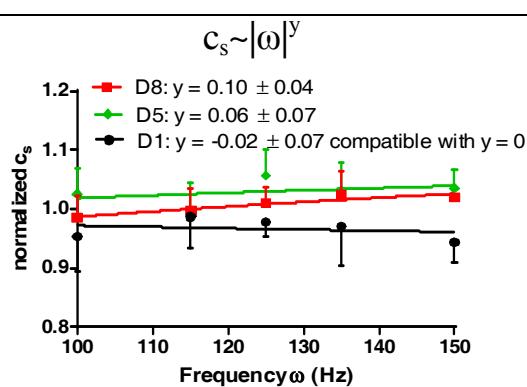


Fig.3: The study of frequency dependence revealed a power law behavior in the presence of vascular outgrowth at D5 and D8 significantly different than the one observed at D1 ($P=0.013$, ANOVA test).