

T₂ mapping and Single Voxel ¹H-MRS Detect Skeletal Muscle Involvement in Young Boys with Duchenne Muscular Dystrophy

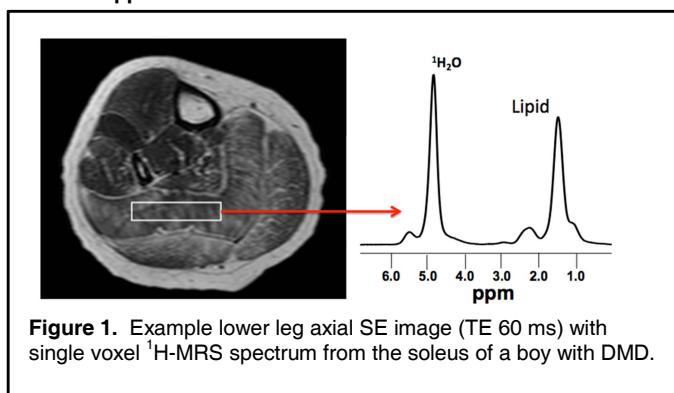
Sean C Forbes¹, Glenn A. Walter¹, William Rooney², Dah-Jyuu Wang³, William Triplett⁴, Rebecca Willcocks¹, James Pollaro², Barry Byrne¹, Richard Finkel⁴, Barry Russman³, Erika Finanger⁵, Gihan Tennekoon³, Lee Sweeney⁶, and Krista Vandernorne¹

¹University of Florida, Gainesville, Florida, United States, ²Oregon Health & Science University, Portland, Oregon, United States, ³Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States, ⁴Nemours Children's Hospital, Florida, United States, ⁵Shriners Hospital for Children, Portland, Oregon, United States, ⁶University of Pennsylvania, Philadelphia, Pennsylvania, United States

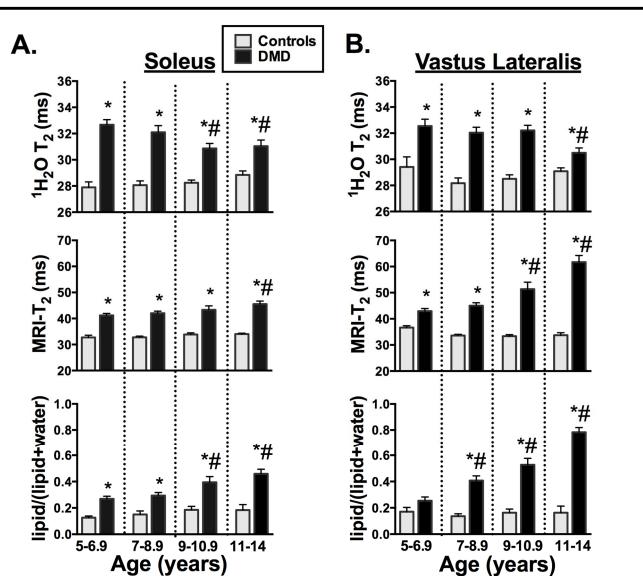
Target Audience: This study will benefit those interested in using T₂ mapping or single voxel ¹H-MRS to evaluate disease involvement in skeletal muscles of muscular dystrophies or other neuromuscular diseases.

Introduction: Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder that is due to a mutation in the dystrophin gene.¹ DMD has an incidence of 1 in 3600-6000 male births and is characterized by progressive muscle deterioration, loss of functional abilities, and reduced life expectancy.² Functional deficits in motor performance, such as reduced distance walked in the timed 6 minute walk test, are often not observed in DMD until after age 7, and therefore these functional measures may not be sensitive for detecting disease progression at a young age.³ In this study, we hypothesized that: 1) MRI-T₂ and ¹H₂O T₂ derived using ¹H-MRS will be sensitive to muscle involvement at a young age (5-7 years) consistent with increased inflammation and muscle damage in DMD compared to controls and 2) MRI-T₂ will increase with disease progression in DMD due to progressive lipid infiltration.

Methods: MR data were acquired from 111 boys with DMD (ages 5-14 years; mean 8.7 SD 2.3 years; 5-6.9 years, n=34; 7-8.9 years, n=34; 9-10.9 years, n=21; 11-14 years, n=22) and 26 healthy controls (age 9.6 SD 2.1 years; 5-6.9 years, n=5; 7-8.9 years, n=5; 9-10.9 years, n=10; 11-14 years, n=6) using 3T MR systems at three institutions (University of Florida, Oregon Health & Science University, and Children's Hospital of Philadelphia). The DMD subjects were identified to have exon deletions (62%), duplications (13%), or point mutations (25%) in the dystrophin gene. T₂-weighted multi-slice spin echo (SE) axial images were acquired (0.75 mm², 7 mm slices, 3.5 mm gap; 16 TE's, 20-320 ms evenly spaced; TR 3 s) from the lower leg (Fig. 1) and thigh. Single voxel ¹H-MRS data were acquired (TE 108 ms; TR 3 s; NA64) for assessment of lipid fraction using stimulated-echo acquisition mode (STEAM) from the soleus (Sol; Fig. 1) and vastus lateralis (VL). Finally, ¹H spectroscopic relaxometry was performed using STEAM in the Sol and VL (16 TE's non-linearly spaced from 11-288 ms; TR 3 s; NA4). MRI and spectroscopic ¹H₂O T₂ values were derived using a single exponential function. Intramuscular lipid fraction was determined using area integration of the phase corrected spectra from the lipid (0.5-2.75 ppm) and ¹H₂O (4.3-5.10 ppm) regions of the spectrum.


Results and Discussion: MRI-T₂, ¹H₂O T₂, and lipid fraction were greater (p<0.05) in DMD compared to controls (Fig. 2). In the youngest age group, DMD were different (p<0.05) than controls for the Sol MRI-T₂ (effect size (ES) 4.0), ¹H₂O T₂ (ES 4.3) and lipid fraction (ES 2.7) and VL MRI-T₂ (ES 2.2) and ¹H₂O T₂ (ES 2.1). In the boys with DMD, MRI-T₂ and lipid fraction were greater (p<0.05) in the oldest age group (11-14 years) than the youngest age group (5-6.9 years), whereas ¹H₂O T₂ was reduced in the oldest age group compared to the youngest age group (Fig. 2). The reduced ¹H₂O T₂ in older boys with DMD may be due to increased fibrosis or reduced inflammation/damage.⁴ The VL presented with larger increases across age group in MRI-T₂ and lipid fraction than the Sol, suggesting that the VL muscle pathology progresses faster than the Sol. No differences were observed in these MR measures among gene mutation type.

Conclusion: MR measures of T₂ and lipid fraction revealed differences between DMD and Controls, including in the youngest age group (5-6.9 years). Furthermore, MRI-T₂ was greater in the older age group compared to the young age group, which was associated with higher lipid fractions. Overall, MR measures of T₂ and lipid fraction may be sensitive to disease involvement and potential therapeutic interventions in DMD, even in the younger boys.


References:

1. Hoffman EP, Brown RH, Kunkel LM. Cell. 1987; 51(6): 919-928.
2. Bushby K, Finkel R, Birnkrant DJ et al. Lancet Neurol 2010; 9(1): 77-93.
3. Henricson E, Abresch R, Han JJ et al. PLoS One 2012.
4. Loganathan R, Bilgen M, Al-Hafez B et al. Int J Cardiovasc Imaging. 2005; 22(1): 81-90.

Research Support: NIAMS/NINDS R01AR05697

Figure 1. Example lower leg axial SE image (TE 60 ms) with single voxel ¹H-MRS spectrum from the soleus of a boy with DMD.

Figure 2. ¹H₂O T₂ (ms), MRI-T₂ (ms), and lipid fraction [lipid/(lipid+water)] in the soleus (A) and vastus lateralis (B) of Control and DMD age groups. Bars represent mean (SEM). * denotes significantly different (p<0.05) than Controls and # indicates different (p<0.05) than 5-6.9 age group in DMD.