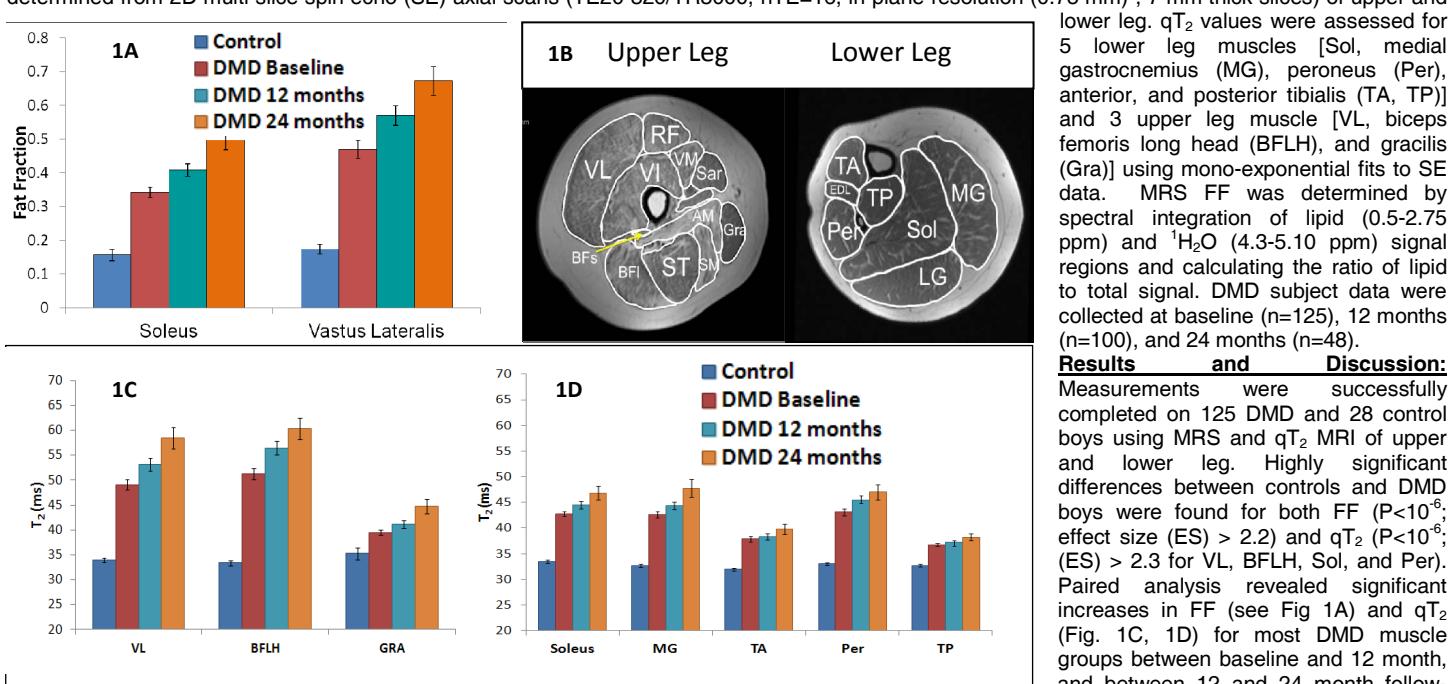


Tracking Disease Progression in Duchenne Muscular Dystrophy: Longitudinal Changes in Quantitative MR Measures

William D. Rooney¹, Sean C. Forbes², William T. Triplett³, James R. Pollaro¹, Dah-Jyuu Wang⁴, Soren DeVos², James Meyer⁴, Rebecca Willcocks³, Barry Byrne⁵, Richard Finkel⁶, Barry Russman⁷, Erika Finanger⁷, Michael Daniels⁸, Lee Sweeney⁹, Glenn Walter³, and Krista Vandenborne²

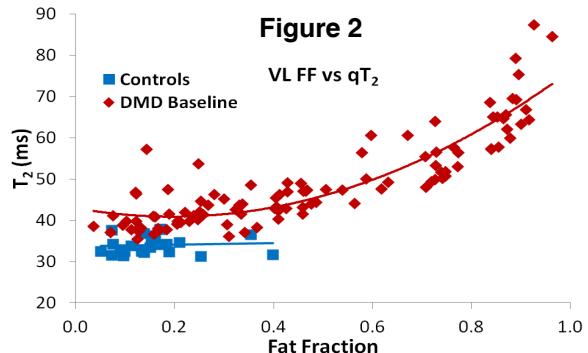

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States, ²Department of Physical Therapy, University of Florida, Gainesville, Florida, United States, ³University of Florida, Physiology and Functional Genomics, Gainesville, Florida, United States, ⁴Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States, ⁵Department of Pediatrics, University of Florida, Gainesville, Florida, United States, ⁶Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States, ⁷Shriners Hospital, Portland, Oregon, United States, ⁸University of Texas, Austin, Texas, United States, ⁹Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States

Synopsis:

This study investigates the utility of quantitative MR measures to track disease progression in DMD. 3T Data were acquired from 125 DMD and 28 control boys. ¹H MRS data were acquired to estimate fat fraction (FF) in vastus lateralis (VL) and soleus (Sol) muscles. MRI quantitative T_2 (qT_2) values were determined for muscles in the upper and lower leg. DMD boys were studied at baseline, and 12 month and 24 month follow-ups. Both FF and qT_2 are increased at follow-up with greatest absolute differences found in upper leg muscles. MRI qT_2 values were strongly associated with muscle FF.

Introduction: Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a dystrophin gene mutation that occurs with an incidence of approximately 1 in 5000 male births.¹ The disease is characterized by sarcolemmal fragility, myofiber degeneration, inflammation, increased synthesis and deposition of extracellular matrix proteins and ultimately replacement of contractile tissue with fatty infiltrate and connective tissue.² There currently is no cure for DMD but promising therapies have been identified and there is a pressing need for improved biomarkers sensitive for disease progression. Quantitative MRI/MRS have excellent sensitivity for detection of muscle pathology associated with DMD³ and strongly correlate with clinical assessments.⁴ ¹H MRS determined fat fraction (FF) and MRI quantitative T_2 (qT_2) muscle measures demonstrate excellent precision and are well-suited for non-invasive serial studies.⁵ The purpose of this study was to investigate the relationship between muscle FF, determined from MRS, and qT_2 , calculated from spin-echo MRI, and the utility of these biomarkers to track disease progression in boys with DMD.

Methods: Data were acquired from 125 DMD boys (baseline ages 5-13 y, mean 8.6 y (± 2.2 y; SD); 95 on corticosteroids) and 28 healthy controls (ages 5-15 y, mean 9.8 (± 2.4 y) using 3T MRI instruments located at three institutions. Fat fraction (FF) was determined using a non-water suppressed STEAM MRS (TE108/TR3000/NA64) single voxel approach applied in the vastus lateralis (VL) and Soleus (Sol). Quantitative T_2 (qT_2) values were determined from 2D multi-slice spin echo (SE) axial scans (TE20-320/TR3000; nTE=16; in-plane resolution (0.75 mm)², 7 mm thick slices) of upper and lower leg. qT_2 values were assessed for 5 lower leg muscles [Sol, medial gastrocnemius (MG), peroneus (Per), anterior, and posterior tibialis (TA, TP)] and 3 upper leg muscle [VL, biceps femoris long head (BFLH), and gracilis (Gra)] using mono-exponential fits to SE data. MRS FF was determined by spectral integration of lipid (0.5-2.75 ppm) and ¹H₂O (4.3-5.10 ppm) signal regions and calculating the ratio of lipid to total signal. DMD subject data were collected at baseline (n=125), 12 months (n=100), and 24 months (n=48).



Upper leg muscles (VL, BFLH) typically showed greater involvement as measured by absolute differences in FF or qT_2 compared to controls. Regression analysis revealed a strong quadratic association between qT_2 values determined by MRI and FF determined by MRS ($R>0.875$; $P<10^{-6}$; Fig. 2) suggesting that increased qT_2 is largely determined by increased muscle fat content in DMD. In summary, both FF and qT_2 provide excellent sensitivity for tracking DMD disease progression and both are likely surrogates for the same underlying pathologic substrate: fat infiltration. qT_2 measures also provide outstanding spatial resolution and total tissue coverage that greatly facilitates characterizing heterogeneity of DMD disease progression in differing muscles.

Grant Support: NIAMS/NINDS R01AR056973

References: 1. Moxley, Pandya, Ciafaloni, Fox, Campbell. *J. Child Neurol.* 25:1116-1125 (2010). 2. Zhou, Lu. *J. Neuropathol Exp Neurol.* 69: 771-776 (2010). 3. Huang, Majumdar, Genant, Chan, Sharma, Yu, Mynhier, Miller. *J Magn Reson Imaging* 4:59-64 (1994). 4. Kim, Laor, Horn, Racadio, Wong, Dardzinski. *Radiology*. 255:899-908 (2010). 5. Forbes, Walter, Rooney, Wang, DeVos, Pollaro, Triplett, Lott, Willcocks, Senesac, Daniels, Byrne, Russman, Finkel, Meyer, Sweeney, Vandenborne. *Radiology*. 269:198-207 (2013).

Figure 2

