

Free-breathing myocardial T2* mapping using single-shot GRE-EPI and automatic non-rigid motion correction

Ning Jin¹, Marie-Pierre Jolly², and Orlando P. Simonetti³

¹Siemens Healthcare, Columbus, OH, United States, ²Siemens Corporate Research, Princeton, NJ, United States, ³The Ohio State University, Columbus, OH, United States

Introduction

Cardiac failure caused by myocardial iron overload is the most common cause of death in patients with thalassemia (1), and myocardial T2* mapping is widely used to detect and quantify myocardial iron in these patients (2). The standard myocardial T2* mapping approach uses an ECG-triggered segmented black-blood multi-echo gradient echo (mGRE) sequence (3). As with any segmented k-space acquisition, data are acquired over multiple heart beats and patient breath-hold is required to avoid respiratory motion artifacts; this strategy fails in severely ill patients and others unable to breath-hold. Methods for mapping myocardial T1 and T2 have successfully addressed this issue via a strategy of single-shot acquisition combined with image registration (4, 5). In this work, we apply a similar strategy and describe a new technique for myocardial T2* mapping using single-shot gradient-echo echo-planar imaging (GRE-EPI) coupled with automatic non-rigid motion correction. The proposed technique is expected to accurately quantify T2* values in the heart with less sensitivity to respiratory motion than the standard, segmented k-space acquisition.

Methods

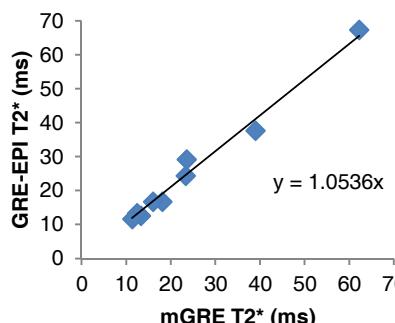
Sequence A pulse sequence strategy was implemented to acquire a series of T2*-weighted images using a single-shot, black-blood GRE-EPI sequence at 8 different echo times (TE = 1.2, 3, 5, 7, 9, 11, 13 and 14 ms) with a flip angle of 18°, a TR of 20 ms, an echo-train-length of 5, a sampling bandwidth of 1500 Hz/pixel, a slice thickness of 10 mm, a GRAPPA acceleration rate of 2 with 24 reference lines, a field-of-view (FOV) of 380 mm and a matrix = 192 × 86. This yields a voxel size of 3.3 × 1.9 × 10 mm³. A frequency-selective fat-suppression pre-pulse was used to minimize chemical displacement artifacts from fat. For black-blood imaging, the double inversion pulses were applied at the R-wave trigger and the inversion time was set to extend into diastole. Each of the eight different echo time images was acquired in a single heart beat with an acquisition window of 280 ms.

MRI All imaging was performed using a 1.5 T MAGNETOM Avanto clinical scanner (Siemens Medical Solutions, Erlangen, Germany) with body matrix and spine coils for signal reception.

Phantom studies Nine T2* phantoms were constructed with Falcon tubes filled with water and doped with 0.25, 0.31, 0.5, 0.62, 0.75, 0.87, 1, 1.12, 1.25 mmol/L MnCl₂ to produce a wide range of T2* values. T2* measurements were performed using the proposed black-blood GRE-EPI sequence with a simulated heart rate of 60 beats/min and 16 signal averages. For comparison, T2* maps were also acquired using the standard ECG-triggered segmented black-blood mGRE sequence with 4 signal averages.

Volunteer studies Experiments were conducted in six healthy volunteers. Myocardial T2* images were acquired in the short axis view using both the black-blood GRE-EPI sequence during free breathing, and the standard ECG-triggered segmented black-blood mGRE sequence during one breath-hold of 14 heart beats

Data Processing In volunteer studies, T2*-weighted images from GRE-EPI sequence were motion corrected using automatic non-rigid motion correction to reduce image mis-registration due to respiratory motion (6). No motion correction was performed for phantom images. T2* maps were calculated by fitting pixel intensities to a two-parameter mono-exponential model (Signal = M₀ * exp(-TE/T2*)). Regions-of-interest (ROIs) were placed in the tubes in phantom images and in the interventricular septum in volunteer images. The mean T2* values within the ROIs were calculated using both sequences and compared using a pair-wise t-test.


Results

Phantom studies A strong correlation was observed between the mean T2* measured using GRE-EPI and the mean T2* measured using mGRE ($r = 0.992$) (Fig. 1). No statistically significant difference was observed between the T2* values measured using the two methods ($p = 0.234$).

Volunteer studies Myocardial T2* maps were successfully acquired in 5 subjects; both methods failed in one subject due to the inability to breath hold during mGRE acquisitions and severe respiratory motion observed during GRE-EPI acquisitions. Fig 2 shows example GRE-EPI source images and the effect of the automatic non-rigid motion correction on single-shot GRE-EPI images acquired during free-breathing. GRE-EPI images at TE = 1.24, 5, 7, 11 ms pre motion correction (top row) and post motion correction (bottom row) are shown. Contours were drawn on TE = 1.24 ms image and projected to the images at later TEs. The automatic non-rigid motion correction successfully reduced image mis-registration due to respiratory motion. Fig 3 shows the representative myocardial T2* maps acquired in one volunteer using the breath-hold mGRE and free-breathing GRE-EPI techniques. The mean T2* of the interventricular septum in 5 volunteers were 33.37 ± 2.64 ms from mGRE measurement and 32.45 ± 2.94 ms from GRE-EPI measurements; while the sample size is small, these measures were not significantly different ($p = 0.156$).

Conclusion

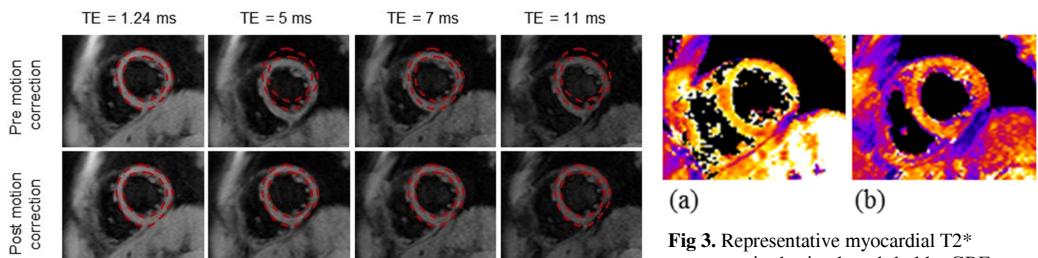

We have developed the novel free-breathing myocardial T2* mapping combining multiple single-shot black-blood GRE-EPI images with automatic non-rigid motion correction. The approach provides accurate myocardial T2* measurements and is insensitive to respiratory motion, and is likely to reduce sensitivity to arrhythmia as well since each image is acquired in a single heart beat. While image registration does not account for through-plane motion, the same approach has proven successful for myocardial T1 and T2 mapping.

Fig 1. Regression plot demonstrates strong correlation between the T2* measured using mGRE and GRE-EPI in phantoms over a wide range of T2* values.

References

1. Zurlo MG et al. Lancet 1989;8653:27–30.
2. Anderson LJ, et al. Eur Heart J 2001;22:2171–2179.
3. He T et al. JMRI 25:1205–1209 (2007)
4. Xue H et al. MRM 2012 Jun;67(6):1644–55.
5. Giri S et al. MRM. 2012 Nov;68(5):1570–8
6. Chef d'hotel C, 2002 IEEE:753–756

Fig 2. Effects of non-rigid motion correction on GRE-EPI images acquired during free-breathing. GRE-EPI images at TE = 1.24, 5, 7, 11 ms pre motion correction (top row) and post motion correction (bottom row) are shown. Contours were drawn on image at TE = 1.24 ms and projected to images at later TEs. Motion correction successfully reduced image mis-registration due to respiratory motion.

Fig 3. Representative myocardial T2* maps acquired using breath-hold mGRE (a) and free-breathing GRE-EPI with motion correction (b). Septal T2* values showed no significant difference between the techniques in five volunteers.