Gradient-Enhanced Effectively Decoupled INEPT (GREEDI)

Daniel Spielman¹, Keshav Datta², Sonal Josan³, Stephen Lynch⁴, and Ralph Hurd⁵

¹Radiology, Stanford University, Stanord, CA, United States, ²Electrical Engineering, Stanford University, CA, United States, ³Radiology, Stanford University, CA, United States, ⁴Chemistry, Stanford University, CA, United States, ⁵GE Healthcare, CA, United States

Background: Polarization transfer methods provide improved detection of ¹³C nuclei directly bonded to protons, however SAR-intensive decoupling makes efficient in vivo measurements difficult. Here we propose an improved inverse-detection sequence for CH spin systems, which avoids the need for high-power decoupling. The targeted application for ¹³C-¹H coherence transfer is enhanced imaging of [2-¹³C]Lac and [2-¹³C]Ala, metabolic products of hyperpolarized [2-¹³C]Pyr. A reversed sequence providing ¹H-¹³C coherence transfer may also prove useful for improved detection of brain ¹³C-labeled substrates following the infusion of thermally polarized ¹³C-glucose of ¹³C-acetate¹.

Hyperpolarized 13C MRS: Hyperpolarized $[2^{-13}C]$ Pyr provides additional mitochondrial metabolic information not available with $[1^{-13}C]$ Pyr, however the resulting $[2^{-13}C]$ -Lac and –Ala peaks are doublets with a shortened T_1 relaxation times, making measurements unfavorable compared to their C1-labeled counterparts. Extending the work of Mishkovsky et al.², large Lac and Ala CH coupling constants $(J\sim150\text{Hz})$ can be exploited for indirect detection using conventional gradient-enhanced reverse Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) $^{13}C^{-1}$ H pulse sequence. The proposed new sequence, Gradient-Enhanced Effectively Decoupled INEPT (GREEDI), adds an extra delay (labeled t_2) and dephasing gradient (G_0) inserted before the first 1 H pulse and adds a final 13 C pulse to call back, as anti-phase magnetization, the typically lost double- and zero-quantum coherences. The sum of the in-phase (conventional INEPT coherence pathway) and the anti-phase terms (GREEDI modification) results in a singlet peak at twice the amplitude of the original doublet. The sign of the final 13 C pulse determines whether the upper or lower doublet peak is selected. Filtering of uncoupled nuclei (e.g. water) is provided by the dephasing gradients G_0 , G_1 , G_2 with the relation G_1 =-4 G_0 =4 G_2 yielding maximum coherence transfer ($\gamma_H/\gamma_C\sim4$). The absence of 180^0 pulses decreases sensitivity to B_1 inhomogeneities. Chemical shift evolution can be neglected during the inter pulse delays when only a single component (e.g. Lac or Ala) is imaged. Because our clinical scanner lacks hardware needed for simultaneous 1 H and 13 C excitation, we used a 600 MHz Varian Inova spectrometer to demonstrate proof of concept for the new sequence using a thermally polarized $[2^{-13}C]$ Lac sample (1 M in D_2 0). Fig. 1 shows the theoretical (b) and experimental (c) results.

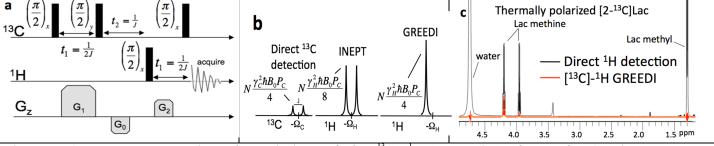
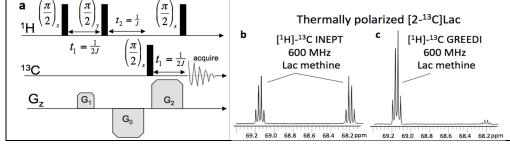



Figure 1. (a) GREEDI pulse sequence diagram for polarization transfer from 13 C to 1 H. (b) Theoretical performance for a CH spin system (P_c =carbon polarization). (c) Representative spectra for direct- 1 H and GREEDI- 1 H detection. GREEDI results show excellent water suppression, doubling of the up-field Lac methine peak, and elimination of the down-field peak. In this thermally polarized case the 1 H Lac methine signal decreases by 4x (low 13 C polarization), in contrast to the hyperpolarized 13 C case where the 1 H signal is expected to be greatly enhanced. Frequency selective 13 C RF pulses can be used to preserve magnetization from other 13 C resonances (e.g. Pyr). Imaging gradients are also easily added for the 1 H detection.

Thermally polarized ¹³C **MRS:** Figure 2 shows the reversed sequence (with experimental performance) for transferring coherence from ¹H to ¹³C nuclei. Modifications needed for in vivo use include timing adjustments to accommodate both CH and CH₂ spin systems and additional 180° refocusing pulses to increase spectral bandwidth. Such an approach may prove useful for ¹³C-brain studies where high-power decoupling in regions such as the prefrontal cortex is prohibitive.

Figure 3 [¹H]-¹³C GREEDI. (a) Pulse sequence for ¹H to ¹³C coherence transfer. (b) Experimental ¹³C spectra from [2-¹³C]Lac showing effective decoupling of short-range CH spin-spin interactions. Residual line splitting are due to longrange CH couplings, which can be eliminated using low-power decoupling if desired.

Conclusion: The proposed modified INEPT sequence, GREEDI, eliminates splitting due to short-range $^{13}\text{C-}^{1}\text{H}$ J-coupling, while providing a $\sqrt{2}$ SNR gain without the need for proton decoupling. The targeted applications are enhanced imaging of $[2^{-13}\text{C}]$ Lac and $[2^{-13}\text{C}]$ Ala (metabolic products generated by hyperpolarized $[2^{-13}\text{C}]$ Pyr), and improved detection of C2, C3, and C4 glutamate and glutamine resonances following infusion of thermally polarized ^{13}C -substrates.

Acknowledgements: NIH EB009070, AA05965, EB015891, and AA018681.

References:

- 1. de Graaf, R. A., Rothman, D. L. & Behar, K. L. State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. NMR Biomed. 24, 958-972 (2011).
- 2. Mishkovsky, M., Cheng, T., Comment, A. & Gruetter, R. Localized in vivo hyperpolarization transfer sequences. Magn. Reson. Med. 68, 349–352 (2012).