

A Proof-of-Concept Study Towards *in vivo* Triglyceride Composition Determination by MR Spectroscopy at 3T, with Validation Against High-Resolution NMR

Takeshi Yokoo^{1,2}, Qing Yuan¹, Hongyue Yu¹, and Robert E Lenkinski^{1,2}

¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States, ²Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States

BACKGROUND/PURPOSE: Triglyceride (TG) is the predominant form of lipid storage in biological tissues, including adipose, bone marrow, and liver. TG is composed of three fatty acid (FA) esters attached to a glycerol molecule. Individual FA molecule may differ in the hydrocarbon chain length (CL, mostly 16C and 18C in animals), saturation index (saturated [0], mono-unsaturated [1], di-unsaturated [2], etc.), and the location of unsaturation (i.e. C=C double bond). Therefore tissue TG pool is generally a mixed population of various types of FAs and the composition can be characterized by the relative proportion of each type, for example, %saturated, %mono-unsaturated, etc. The importance of the FA types is increasingly recognized in many biological processes such as cancer, including hepatocellular carcinoma¹. Earlier studies explored the feasibility of TG composition determination in humans using single-voxel *in vivo* MR spectroscopy (MRS)^{1,2,3}. Proton spectra of TGs have multiple peaks of different chemical shift, whose relative peak areas reflect the proportions of different FAs. Previous MRS studies used known types of pure FAs² or published composition values³ as the reference standard to validate the composition determination technique. High resolution nuclear magnetic resonance (NMR) is now recognized as a standard analytical chemistry technique (along with gas/liquid chromatography) for TG composition by American Oil Chemists' Society, and may be a more suitable reference standard for clinical MRS. In this proof of concept study, we selected 6 different fats/oils of different FA proportions, and compared single-voxel MR spectroscopy at 3T (128 MHz) against 400 MHz high-resolution NMR for TG composition determination. The hypothesis was that the measured TG compositions are similar, assessed by relative spectral peak sizes as well as by calculating % proportion of saturated FA (SFA), mono-unsaturated FA (MUFA) and poly-unsaturated FA (PUFA).

