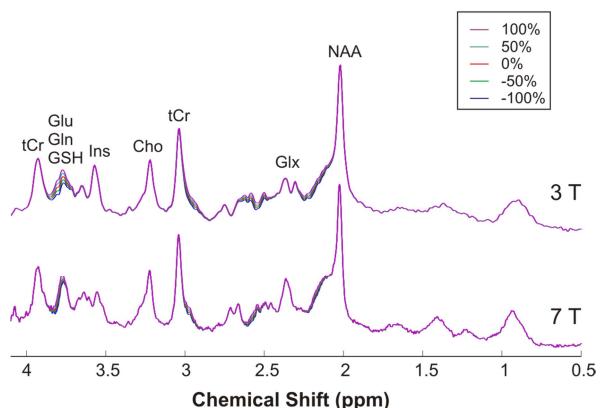


Sensitivity and specificity to quantify changes in human brain glutathione and ascorbate concentrations using short echo-time ^1H MRS at 3 T and 7 T

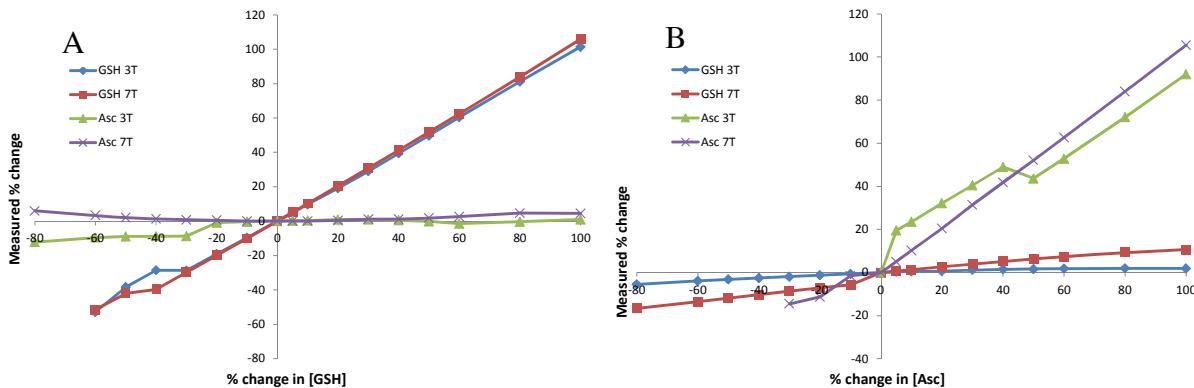
Dinesh K Deelchand¹, Małgorzata Marjanska¹, and Melissa Terpstra¹

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Target audience: Researchers who use ^1H NMR spectroscopy beyond NAA, creatine, choline and *myo*-inositol


Purpose: Glutathione (GSH) and ascorbate (Asc) are two important antioxidants that are concentrated in the human brain at $\sim 1 \mu\text{mol/g}^1$. Their resonances are difficult to quantify due to low signal-to-noise and spectral overlap. The purpose of this study was to determine the accuracy and precision with which well-controlled changes in GSH and Asc signals can be detected in short echo time (T_E) human brain spectra acquired at 3 T and 7 T. Our *hypothesis* was that changes would be more readily picked up at higher field.

Methods: Five healthy subjects were examined at both 3 T and 7 T. Ultra-short T_E ^1H spectra were measured from an 8 ml VOI located in the posterior cingulate cortex using STEAM² ($T_R = 4$ s, $T_E = 8$ ms, 64 averages). A freshly made GSH phantom (10 mM) was measured analogously under physiological conditions. This phantom spectrum was accordingly line broadened and injected into the *in vivo* spectrum for each subject at a level of -100% to 100% of the GSH signal present in the baseline spectrum. All resulting spectra were analyzed with LCModel³ using simulated basis spectra and a measured macromolecule spectrum. Analogous experiments were carried out for Asc. The two-tailed, unpaired student's t-test was used to compare concentrations measured from altered spectra relative to baseline.


Results: Figure 1 shows *in vivo* spectra after addition and subtraction of GSH signal. Change was more apparent at 3 T than 7 T. An increase in GSH concentration of $\sim 35\%$ and above ($P < 0.05$) could be detected at both 3 T and 7 T although the precision (i.e., CRLB) to measure GSH is better at 7 T. The accurate detection of a reduction in GSH signal was possible up to -30% at both 3 T and 7 T ($P < 0.05$ at 3 T, Figure 2A). Similarly, the change in Asc signal was detected at $\sim 30\%$ and beyond ($P < 0.05$) at 7 T (Figure 2B). A small increase of 11% was observed in GSH when Asc was increased to 100% at 7 T. Asc could not be reliably quantified at 3 T; it was either under- or over- estimated based on the % of Asc signal injected (Figure 2B).

Discussion: Attempting to quantify changes in antioxidants from short T_E spectra is innovative. Quantitation of weakly represented neurochemical concentrations from short T_E spectra without editing is attractive because several compounds can be detected at once and confounding by transverse relaxation is avoided. This study is unique because few others have assessed the accuracy and precision of such quantification. Large changes in Asc signal (although unlikely due to strong homeostatic mechanisms in the human brain⁴) would result in counter-fit changes in GSH signal at 7 T (Figure 2B). Paradoxically, large changes in Asc signal have negligible influence on GSH signal at 3 T, likely due to failure to resolve Asc at 3 T.

Conclusions: This study advanced knowledge on the accuracy with which weakly represented neurochemical resonances can be quantified from short T_E human brain spectra. It shows that an increase in GSH signal can be accurately measured at 3 T and 7 T, although a quantitative decrease in signal is difficult to detect below 30%, especially at 3 T. In addition, a B_0 field above 3 T is necessary to accurately quantify Asc signal using short T_E sequences. As such, we have increased our capability to choose the optimal pulse sequence and field strength to study hypotheses involving weakly represented neurochemicals.

Figure 1: Example of *in vivo* spectra from the same subject at 3 T (top) and 7 T (bottom) after injecting different levels of phantom measured GSH signal.

Figure 2: Mean change (5 participants) in [GSH] and [Asc] at 3 T and 7 T when phantom (A) GSH and (B) Asc signals were injected into *in vivo* spectra.

References: 1.Terpstra et al MRM 2006; 2. Emir et al NMR Biomed 2011; 3. Provencher MRM 1993; 4. Spector J Neurochem 2009.

This work was supported by funding from the NIH R01AG039396 P41 EB015894, P30 NS076408, and S10 RR026783.