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Target Audience: Researchers interested in real-time multi-parametric monitoring of
thermal therapies and the use of parallel computational methods for fast MR
processing.

Purpose: Fast chemical-shift imaging (fCSI) using multiple gradient-echo (MGE)
acquisitions has previously been developed as a robust method for temperature
monitoring by direct measurement of the water proton resonance frequency.'
Additionally, T2*, T1, and amplitude can be simultaneously estimated using multi-
flip angle variations of these sequences which facilitates multi-parametric monitoring
of tissue changes during therapy.>® However, the bottleneck to real-time monitoring
with this technique is post-processing time. In this work we compare the performance
of two autoregressive moving average (ARMA) based algorithms implemented on
CPU and GPU architecture on a simulated multiple flip angle multi gradient-echo
acquisition (MFA-MGE) to evaluate the feasibility of real time measurement of
amplitude, T1,T2*, and resonance frequency for monitoring thermal therapies.
Methods: In silico MFA-MGE data was generated for a mixture of methyl and water
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where the assigned tissue properties and scan parameters are given in tables 1 and 2 and So 1000 1500
e~N(0,0). Parameters were recovered in two stages. First, for each phase, the MGE signal T2* 35 15
was modeled as a sum of complex exponentials and solved for amplitude, T2*, and 11 500 36_0
resonance frequency using either a Prony algorittm (CPU/GPU) alone and a Steiglitz- | CenterFreq.(8) | Oppm 3-5ppm

McBride (SM) algorithm (5 iterations) using the Prony solution as an initial condition (CPU Table 1- In Silico phantom properties.

only). Second, at each phase, the T1 value was recovered using the recovered amplitude values and

nominal flip angles with a linear fit technique.* Computations were performed in MATLAB (v2013a, Matrixsize ]
. . . . . Minimum echo time 1.6 ms
Mathworks, Natick, MA) using three different processing methods: serial CPU (Intel Xeon E5640  ["Ecyo spacing 16ms
2.67GHz), parallel CPU (8 x Intel Xeon E5640 2.67GHz), and parallel GPU (NVIDIA GF100). The [ Number of echoes 16
100 —" : : —— parallel toolbox was used for multi-threaded Flip angles (a) 20°/30°
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60 compute kernels are expected to be memory -
i able 2- Simulated pulse sequence parameters.
40 | bound on the GPU architecture, memory
\ management, global memory access, and memory coalescence were carefully considered
0 N | in the implementation. Each processing method and algorithm combination was
0 benchmarked by increasing the ROI size. The accuracy of each parameter was evaluated
-20 1 for 10" samples over a range of SNR values ( SNR = M) from 1 to 100 using
_40 | both algorithms.
Results: The benchmarking results are shown in figure 1 for each algorithm and
-60 | processing method. Parallel processing on CPU is approximately one order of magnitude
-80 {  faster compared to serial computation for both algorithms. The SM algorithm takes 1.5-2
100 ‘ . ‘ ‘ times longer than the Prony algorithm for both serial and parallel computation on the
0 20 40 owr P 80 100 CPU. The Prony algorithm on GPU is approximately one and two orders of magnitude
Fi 2 A " 4 T1val function of SNR faster than the parallel and serial Prony algorithms, respectively. The increased accuracy
(;_glirzemm;;curacyo recovere values s atunction o of the SM algorithm was substantial at low SNRs with T1 estimation being the least

stable. The accuracy of T1 estimation for methyl protons is shown in figure 2.

Discussion: Benchmarking results show that parallel CPU and GPU computation can reduce the time needed for estimation of multiple parameters
by 1-2 orders of magnitude. At ROI sizes currently used for thermal therapy monitoring (<100x100) the Steiglitz-McBride algorithm can be run on 8
CPUs within the time it takes to acquire one image (=5s). GPU architecture is an order of magnitude faster and could potentially be used to process
entire images or permit the use of accelerated acquisitions using techniques such as parallel imaging or compressed sensing. Examination of the
accuracy of both algorithms shows that the Steiglitz-McBride algorithm is necessary for real time monitoring at low SNRs and should be

implemented on GPU architecture in the future.

Conclusion: Post processing on parallel CPU and GPU architectures makes multi-parametric monitoring of thermal therapies, and other amenable
post-processing approaches, in near real-time feasible. While GPU architecture provides an order of magnitude speedup over parallel CPU, the
Steiglitz-McBride algorithms should be implemented to maximize the accuracy of the parameter recovery at low SNR.
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