

Simultaneous T1 and PRF MR Thermometry: Optimization of Flip Angles

Tetiana Dadakova¹, Jan Gerrit Korvink^{2,3}, John Matt Pavlina¹, and Michael Bock¹

¹Medical Physics, Department of Diagnostic Radiology, University Medical Center Freiburg, Freiburg, Germany, ²Department of Microsystems Engineering—IMTEK, University of Freiburg, Freiburg, Germany, ³Freiburg Institute of Advanced Studies—FRIAS, University of Freiburg, Freiburg, Germany

Introduction

MR thermometry is an important tool to monitor the efficiency and safety of different thermal treatment methods. Two temperature-sensitive MR parameters are used for temperature calculations: the proton resonance frequency shift (PRF) and longitudinal relaxation time change (T1) [1]. A combination of these two methods might allow for a more precise temperature monitoring for example in fat where PRF techniques alone fail. Recently, the influence of MR noise on temperature calculations was evaluated for both methods [2]. In this work, we present simulations and analytical calculations on the optimal flip angle for MR thermometry with simultaneous PRF and T1 measurements.

Materials and Methods

MR signal simulations were performed with the software package Matlab R2012a. First, the complex MR signal without noise was calculated using the signal equation for a spoiled gradient echo sequence (FLASH):

$$S = M_0 \cdot \sin\alpha \cdot \frac{1 - e^{-TR/T_1}}{1 - \cos\alpha e^{-TR/T_1}} \cdot e^{-TE/T_{2^*}} \cdot e^{i\Delta\varphi}. \quad (1)$$

Here, M_0 is the initial magnetization, α is the flip angle, TR is the repetition time, TE is the echo time, T_1 is longitudinal relaxation time, T_{2^*} is the apparent transverse relaxation time, and $\Delta\varphi$ is the temperature-dependent phase. Next, complex Gaussian noise was added yielding a Rician distribution of the signal magnitude [3]. From the complex signal with noise the temperature was calculated using two methods:

$$\text{PRF: } T_{PRF} = \frac{\Delta\varphi}{\gamma\alpha_{therm}B_0TE}, \text{ and} \quad (2)$$

$$\text{T1: } T_{T1} = \frac{T_1 - T_{1ref}}{m} + T_{ref}, \text{ where } m = \left[\frac{-TR}{\ln\left(\frac{S - M_0 \cdot \sin\alpha \cdot e^{-TE/T_{2^*}}}{S \cdot \cos\alpha - M_0 \cdot \sin\alpha \cdot e^{-TE/T_{2^*}}}\right)} - T_{1ref} \right] \cdot \frac{1}{T - T_{ref}}. \quad (3)$$

Here, γ is the gyromagnetic ratio, α_{therm} is the PRF thermal coefficient, B_0 is the static magnetic field, and T_{1ref} is the longitudinal relaxation time at reference temperature T_{ref} . The signal to noise ratio (SNR) was calculated by dividing absolute of signal without noise by absolute of noise.

The following parameters were used for the simulation: $T = 50^\circ\text{C}$, $T_{ref} = 20^\circ\text{C}$, $T_{1ref} = 685\text{ ms}$, $T_2^* = 50\text{ ms}$, $m = 13\text{ ms}/^\circ\text{C}$, $\gamma = 2.675 \cdot 10^8\text{ rad/(s}\cdot\text{T)}$, $\alpha_{therm} = 0.01 \cdot 10^6\text{ }1/\text{^\circC}$, $B_0 = 1.5\text{ T}$, $TE = 20\text{ ms}$, $M_0 = 1$, $TR = 30\text{ ms}$. The calculations were repeated 100000 times and mean and standard deviation of the temperature were computed for each method for flip angles from 1° to 90° . Temperatures and SNR were plotted as a function of flip angle (Fig. 1).

Results

Figure 1 shows that the optimal SNR is achieved at the Ernst angle $\alpha = 13^\circ$ for the $T_1(T=50^\circ\text{C}) = 1105\text{ ms}$. The PRF simulation shows that the temperature errors of PRF method are smallest for the highest SNR, as this minimizes the errors in the phase calculation.

For the T_1 -based calculations the smallest error of $\pm 1.6^\circ\text{C}$ is found at $\alpha = 23^\circ$ (Fig. 1C), whereas a significantly larger uncertainty of $T_{T1} = 50.1 \pm 2.1^\circ\text{C}$ is found at the Ernst angle. T1-based temperature calculations are not only sensitive to SNR but also to the rate of signal change with $T_1: \partial S/\partial T_1$. Thus, the optimal flip angle for the T1-method is found where $\partial S/\partial T_1$ is maximal, i.e. $\partial(\partial S/\partial T_1)/\partial\alpha = 0$. Inserting Eq. 1 finally yields

$$\alpha = \arccos\left(\frac{2 - e^{-TR/T_1}}{2e^{-TR/T_1-1}}\right). \quad (4)$$

With the parameters above the optimal flip angle is 23° which is in excellent agreement with the calculations shown in Fig. 3.

Discussion

The simulations and calculations show that the optimal flip angle is not the same for the both methods. Even though the error increases for PRF method when the flip angle increases beyond the Ernst angle, for $\alpha = 23^\circ$ it remains small ($\pm 0.2^\circ$) when the optimal flip angle for the T1 method is applied. On the other hand, the T1-based temperature calculations show a higher uncertainty at the Ernst angle (Fig. 1C). Thus, for this set of parameters a higher flip angle as given in Eq. 5 is the optimal choice to minimize the T1 error for both methods. In the future, the optimal signal preparation strategies that allow stronger T1 weighting will be studied to make full use of the temperature information contained in the MR signal.

Acknowledgements: This work was partially supported by the grant from the Eurostars Project E! 6620 (PROFUS).

References:

- [1] Rieke V, et al. *J Magn Reson Imaging* 2008;27:376-390.
- [2] Dadakova T, et al. *DS-ISMRM 2013*, #P11.
- [3] Gudbjartsson H, et al. *Magn Reson Med* 1995;34(6): 910-914.

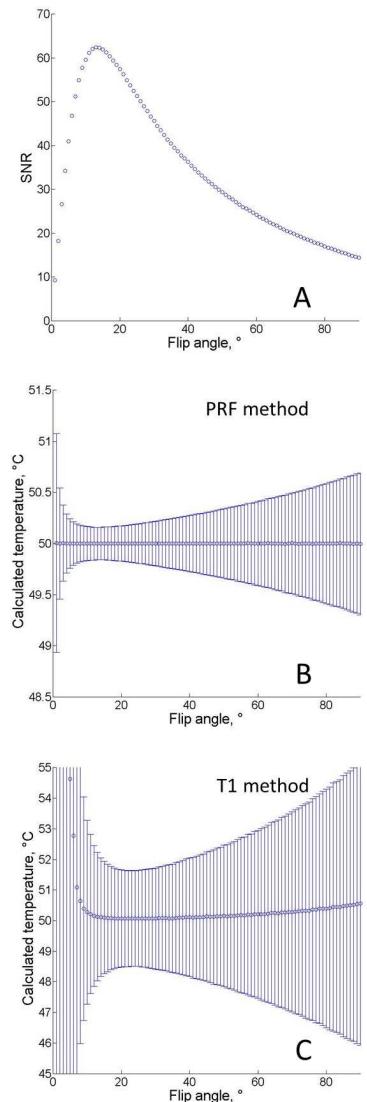


Fig. 1: A. SNR as a function of flip angle α . B. Temperature calculated with the PRF method as a function of flip angle α . C. Temperature calculated with the T1 method as a function of flip angle α .