

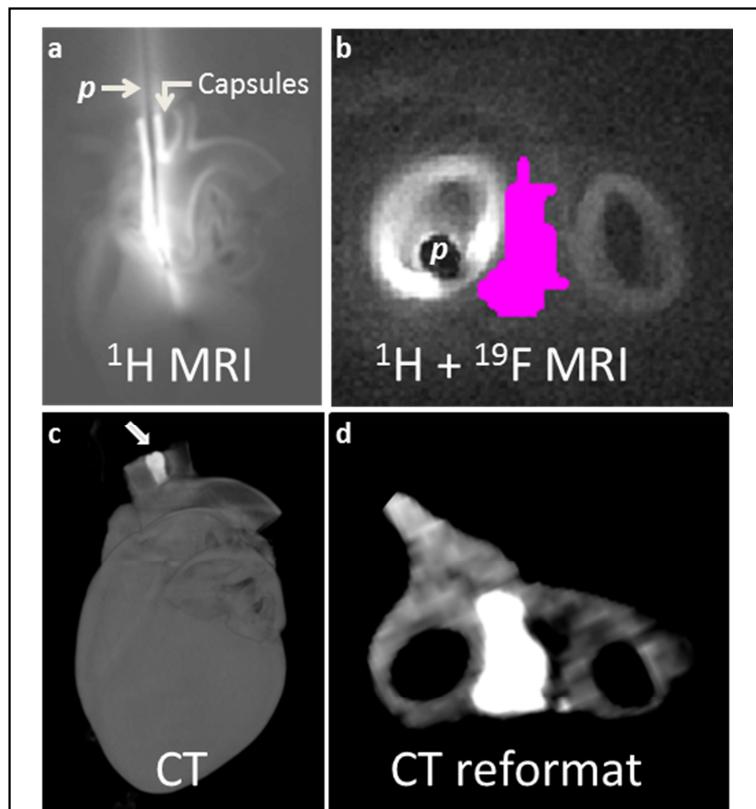
Multinuclear ($^{19}\text{F} + ^1\text{H}$) high-resolution intravascular MRI of perfluorooctyl bromide (PFOB) microcapsules at 3T

Shashank Sathyanarayana Hegde¹, Li Pan², Guan Wang^{1,3}, Yingli Fu¹, and Dara Kraitchman¹

¹Radiology, Johns Hopkins University, Baltimore, Maryland, United States, ²Siemens Corporation, Baltimore, Maryland, United States, ³Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States

Audience: MR Interventionalists interested in cellular therapeutic delivery or vulnerable plaque detection.

Purpose: One of the challenges in the development of transplanted cellular therapeutic strategies is effective *in vivo* tracking of cells post-delivery. Fluorine (^{19}F) MRI combined with anatomic proton (^1H) MRI provides an effective method for tracking labeled cells¹. Conventionally, surface and/or body radiofrequency coils have been utilized for the MRI component of such multimodal imaging. Recently, 3T intravascular MRI (IVMRI) probes have been shown to provide high-resolution *in vivo* trans-luminal imaging with local signal-to-noise ratios superior to surface coils². Here, for the first time, using an IVMRI probe designed for both ^1H and ^{19}F MRI, we show high-resolution localization of perfluorooctyl bromide (PFOB) microcapsules in a porcine heart *ex vivo*. Localization is confirmed by computed tomography (CT) imaging of the microcapsules.


Methods: A multinuclear IVMRI probe was designed using a 2mm outer-diameter 3T loopless antenna with a 40mm resonant whip. The whip length was essentially the same at the proton and fluorine Larmor frequencies (128,116MHz)³, thereby allowing interchangeable operation for both nuclei. A switchable interface afforded either transmit/receive or receive-only operation². The probe was inserted into an *ex vivo* porcine heart immersed in body-equivalent (3gL^{-1}) saline and the ventricle was accessed via the brachiocephalic artery. PFOB microcapsules were produced using a modified alginate microencapsulation method with the addition of 12% (v/v) PFOB allowing for multimodality (MRI + CT) detection. Approximately 0.8cc of PFOB capsules was injected into the tissue between the brachiocephalic and subclavian arteries (Fig. 1a). The same IVMRI probe was used as: (1) a receiver with body-coil transmission for ^1H MRI on a Philips 3T (Achieva); and (2) in the transmit/receive mode for ^{19}F MRI on a Siemens 3T (Tim Trio). The proton and fluorine images were co-registered and overlaid to form a composite image. MRI was followed by c-arm CT imaging (Artis Zee, Siemens) to confirm the deposition of the radio-opaque microcapsules.

Results: Insertion of the probe into the heart can be seen under ^1H MRI (bright line, Fig. 1a). PFOB capsules are identified under ^{19}F MRI at 0.8mm in-plane resolution (Fig. 1b, magenta). ^1H IVMRI at 0.2mm resolution clearly delineates the vessel wall (around *p*, Fig. 1b). The composite image (Fig. 1b) shows good correlation with a CT cross-sectional reformat at the same location (Figs. 1c, 1d).

Conclusions: We show, for the first time, that 3T IV MRI detectors are ideally suited to high-resolution (sub-mm) detection of both fluorine and hydrogen. Multinuclear IVMRI probes provide an effective method to image and monitor potential cardiovascular labeled cellular therapies *in vivo*.

Refs: (1) Barnett BP, et al. Radiology. 2011;258(1):182-91 (2) Sathyanarayana S, et. al., JACC Card Im. 2010; 3:1158-1165. (3) El-Sharkawy AM et al. Med Phys 2008; 35:1995-2006.

Support: 2011-MSCRFII-0043, Siemens Corporation

Figure 1: (a) Proton MRI from an intravascular probe *p* inserted into a porcine heart *ex vivo* showing location of PFOB capsules injection. (b) Composite image showing Fluorine MRI from the same probe at the injection site overlaid (magenta) on a proton MRI of the vessel. (^1H MRI: 3D TSE, TR/TE=298/14ms, FA=90°, voxel = $0.2 \times 0.2 \times 4\text{mm}^3$, TSE fact. 6; ^{19}F MRI: 3D TruFISP, TR/TE=4/2ms, FA=12°, voxel = $0.8 \times 0.8 \times 5\text{mm}^3$, 32 avg.) (c) CT of the whole organ (70kV, 20sDCT) confirms location of the radio-opaque capsules (arrow) and (d) reformatted CT images at the injection location shows high correlation with (b).