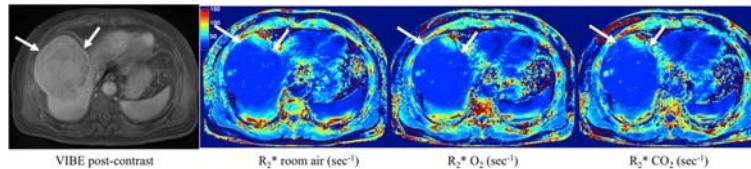
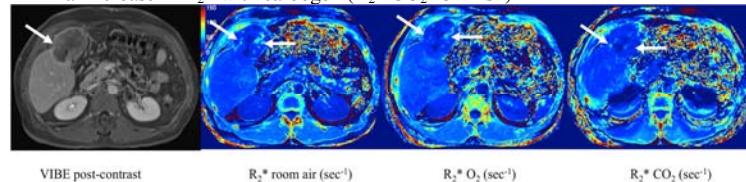


Feasibility and Reproducibility of R_2^* Measurement Under Oxygen and Carbogen Challenge in Healthy Subjects and Patients with Hepatocellular Carcinoma at 1.5 T and 3T


Octavia Bane¹, Cecilia Besa¹, Niels Oesingmann², Hadrien Dyvorne³, Guido Jajamovich¹, Marcelo Facciutto⁴, Sasan Roayaie⁴, and Bachir Taouli¹

¹Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States, ²US MR Division R&D, Siemens Healthcare, New York, NY, United States, ³Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States, ⁴Transplant Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States


TARGET AUDIENCE: Scientists and radiologists with interest in imaging tumor hypoxia.

PURPOSE: Tumor oxygenation is influenced by several factors including microvessel density, blood flow, blood volume, blood oxygen saturation, tissue pO₂ and oxygen consumption rate. BOLD MRI measure R_2^* ($1/T_2^*$) of tissues, which depends on blood flow, hematocrit, and oxygen saturation of hemoglobin. In hypoxic tissues, the proportion of deoxygenated hemoglobin (Hb) is greater, so R_2^* is larger, and is expected to decrease during a hyperoxic respiratory challenge, as deoxyHb becomes more saturated with O₂. The purpose of our initial study is to quantify baseline R_2^* and changes after O₂ and carbogen respiratory challenges using BOLD MRI in patients with hepatocellular carcinoma (HCC) at 1.5T and 3T. We also assessed measurement reproducibility of R_2^* values.

MATERIALS AND METHODS: 8 healthy volunteers (F/M 7/1, mean age 36 y) and 11 preliminary patients with HCC (M/F 10/1, mean age 59 y) underwent BOLD imaging of the liver with hyperoxic and hyperoxic-hypercapnic respiratory challenge at 1.5T (Aera, Siemens) and/or 3T (Skyra, Siemens). 6 subjects had test-retest studies (3 patients/1 volunteer at 1.5T and 2 patients at 3T). Fat-suppressed T_2^* -weighted, 2D GRE images of the liver (1.5T/3T: FA 35°, TR 242/165, 5 in-phase TEs 4.6-23/ 7 in-phase echoes 2.46-17, FOV 225 x 340, 230 x 384, 24 slices, slice thickness 7 mm) were

Fig. 1: Patient with HCC evaluated at 1.5T. HCC identified on post-contrast imaging (arrows) shows minimal response to O₂ (R_2^* air 23.81 s⁻¹, R_2^* O₂ 23.65 s⁻¹) and a minimal increase in R_2^* with carbogen (R_2^* CO₂ 25.22 s⁻¹).

Fig. 2: HCC evaluated at 1.5T, with central necrosis on post-contrast imaging (arrow). Areas of response to hyperoxia are at the periphery (arrows). Overall, HCC shows decrease in R_2^* with O₂ (R_2^* air 23.96 s⁻¹, R_2^* O₂ 19.87 s⁻¹) and with carbogen (R_2^* CO₂ 20.06 s⁻¹).

acquired in multiple breath-holds at baseline (room air) and after 10 min. of breathing 100% O₂ and/or carbogen (95% O₂/5% CO₂). Diffusion, T_2 -weighted, in and out-of-phase, and (in patients) DCE-MRI were acquired during the same imaging session. R_2^* maps were computed using in-house software, by fitting the MGRE signal to a monoexponential fit (Fig. 1, Fig. 2). ROIs were drawn in the right hepatic lobe, paravertebral muscles and in tumors (in patients). Mean R_2^* values at baseline, after O₂ and carbogen, as well as ΔR_2^* (%) = 100*[(R_2^* baseline - R_2^* gas)/ R_2^* baseline] were calculated for HCCs, liver parenchyma and muscle. A paired t-test was used to compare the R_2^* at baseline to the R_2^* after gas challenges.

RESULTS: MGRE signal followed monoexponential decay (fit $R^2 > 0.9$) in all tissues. The intrasubject, test-retest mean coefficient of variation (CV) for R_2^* measurements at 1.5T for all inhaled gases, liver/muscle and lesions was <15% for R_2^* at baseline and after gas challenges, except for muscle with carbogen at 1.5T. Of the 8 lesions studied with O₂ at 1.5T, 3 showed decrease in R_2^* (mean ΔR_2^* = 10.96 %), 3 showed an increase in R_2^* (mean ΔR_2^* = -5.47 %), and 2 showed no change. 4/5 lesions studied with carbogen at 1.5T showed an increase in R_2^* (mean ΔR_2^* = -7.92%). At 3T, 4/8 HCCs showed a decrease in R_2^* with O₂ (mean ΔR_2^* = 18.04 %), 3 were non-responders and 1 showed an increase (ΔR_2^* = -17.5%). Of the 3 lesions studied with carbogen, 2 showed an increase in R_2^* (mean ΔR_2^* = -25.25 %), with the same behavior reproduced at both field strengths in the same lesion assessed twice (ΔR_2^* = -9.96% at 3T and -8.8% at 1.5T).

DISCUSSION: Our findings are in accordance with published work that identified no significant change in R_2^* of the liver with O₂ challenge. As previously published

(1), we observed statistically significant change in muscle with carbogen at 1.5T, which was not reproduced at 3T. However, unlike O'Connor et al (1), we did not find statistically significant increase in R_2^* in the liver with carbogen, findings which could not be reproduced by other investigators (2). For HCC, although studies in animals and humans have previously shown a decrease in R_2^* with hyperoxia and hypercapnia (3), the response of lesions can be highly variable due to the flow and oxygen level dependent (FLOOD) effect (4). The increase in R_2^* with carbogen administration, observed previously in large rat HCCs (5), can be potentially explained by the vasodilator effect of carbogen, which brings non-oxygen saturated hemoglobin to the tissue, thereby increasing the concentration of deoxyhemoglobin and R_2^* . Hypercapnia can also decrease blood pH, which decreases hemoglobin's affinity for oxygen according to the Bohr effect, and thus increases R_2^* (4).

Table: R_2^* (sec⁻¹) in all subjects and mean intrasubject CV(%) in test-retest subjects, at both platforms. CB=carbogen, n* number of lesions studied, n number of healthy tissues studied, **p <0.05; all the rest was non significant.

CONCLUSION: Our preliminary experience with BOLD MRI demonstrates variable response of HCC to O₂ and carbogen challenges, which should be correlated to pathologic findings/tumor biology in this ongoing study.

References:

- O'Connor JP et al. Magn Reson Med 2009;61(1):75-83
- Donati OF et al. NMR Biomed 2012;25(10):1133-1138.
- Burrell JS et al. J Magn Reson Imaging 2013.
- Howe FA et al. NMR Biomed 2001;14(7-8):497-506.
- Guo Y et al. Magn Reson Imaging 2012;30(1):133-138.

Grant support: 1 U01 CA172320