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Target audience: Those who are studying white matter pathology in Alzheimer’s disease using relaxometry will benefit from this study.

Purpose: The corpus callosum (CC) is the largest commissural fiber connecting left and right hemisphere of the brain'. Emerging evidence suggests that a variety
of abnormalities, detected in the microstructure of this white matter fiber tract, can be an early event in Alzheimer's disease (AD) pathology”. However, little is
known about tissue characteristics of these abnormalities and how these abnormalities evolve during AD progression. In this study, we measured in vivo magnetic
resonance transverse relaxation times (7%) to longitudinally monitor changes in tissue integrity and abnormalities related to myelination and demyelination
processes in the CC of an AD mouse models.

Methods: Tg2576 and age-matched wild-type littermates were used in this study’. The number of animals per age is as follows: control mice: age 10 months (n =
8), 14 months (n = 8), 16 months (n = 6) and 18 months (n = 6); Tg2576: age 10 months (n = §), 14 months (n = 9), 16 months (n = 8) and 18 months (n = 7). All
measurements were conducted on a vertical wide bore 9.4T Bruker spectrometer, with a 1 Tm™ actively shielded imaging gradient insert (Bruker). Radio frequency
transmission and reception was performed with a volume coil (20 mm). Bruker ParaVision 5.0 was used for scan control and image acquisition. In vivo T, values
were collected from same animals at age 10, 14, 16, and 18 months from CC, cortex (CX), hippocampus (HC) and thalamus (TH) regions (Fig. 1) using MSME
sequence. MSME experiments were performed as described previously* with following imaging parameters: number of echoes = 12 with echo spacing 8.5; TR= 1.5
s; voxel resolution = 7.8 x 7.8 pmz Slice number=10; Slice thickness = 1 mm. To calculate relaxation times following fit functions were used: T,vtr fit function (y=
A+C*exp (-t/T>) for T, evaluation (A= Absolute bias, C= signal intensity). ROIs were manually defined. Statistical significance was assigned for values of P < 0.05.
The Hematoxylin and eosin stain (H&E) and Luxol fast blue staining (LFB) were used to compare white matter changes between wild-type and Tg2576 mice. To
detect gliosis from brain slices, primary polyclonal anti-GFAP and anti-IBA-1 were used’. To detect AP, brain sections were subjected to immunohistochemistry
using monoclonal anti-AB42 (BC42), anti AB40 (BC40) and polyclonal anti-Ap 40—42 as described earlier.

Results and Discussion: In this study, in vivo T, changes were followed longitudinally in the CC of Tg2576 mice between 10 and 18 months of age (Fig. 2). The
major finding of this study was a significant prolongation (P<0.05) of the 7 in the CC, reflecting significant microstructural changes in Tg2576 mice as compared
to wild-type mice. Interestingly, the 7, of CC was already significantly longer for 10 months old Tg2576 mice, compared to age-matched wild-type mice, at the
onset of AP deposition. In contrast, grey matter regions surrounding the CC, such as the CX and HC, showed a significant 7, decrease compared to wild-type mice
(Fig. 3). No change in 7 values in TH region was observed at any age, which was associated with very low AP deposition in this region. Histological analyses
clearly revealed demyelination (Fig. 4), gliosis and amyloid-plaque deposition in the CC. Our results suggest that demyelinating and inflammatory pathology may
lead to prolonged relaxation times and can mark an early event during AD progression. To our knowledge, this is the first longitudinal in vivo T study assessing
microstructural changes in the CC of the Tg2576 mice.
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