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Purpose: Magnetic resonance imaging (MRI) has been extensively studied for its ability to visualize the anatomical and physiologic structures as 
well as functional information. But MRI commonly suffers from an inherently slower data acquisition process. To overcome this problem, 
compressed sensing-based MRI (CS-MRI) has emerged as a promising framework for MRI reconstruction from undersampled k-space data [1]. Both 
wavelet sparsity and total variation (TV) regularization have been widely used to stabilize the reconstruction results. In conventional CS-MRI, L1 
norm of wavelet coefficients is extremely effective, but inherently there is a need to oversample at above the theoretical minimum sampling rate to 
guarantee exact reconstruction. Recent work has shown that non-convex optimization with Lp (0≤p<1) norm could further reduce the number of 
required measurements [2]. In this study, we mainly focus on L0 norm because it can better represent the measure of wavelet sparseness. In practice, 
MR images not only are sparse in wavelet domain, but also tend to be tree-structured sparse [3]. Thus there is a great potential to incorporate the L0 
regularized tree-structured wavelet sparsity (TsWS) into highly undersampled MR image reconstruction. On the other hand, TV commonly tends to 
cause staircase-like artifacts due to its nature in favoring piecewise constant solution. To overcome the model-dependent deficiency, the second-order 
total generalized variation (TGV2) regularization [4] will be introduced to suppress staircase-like artifacts while preserving tissue features. 

Methods: We propose to combine L0 regularized TsWS and TGV2 to reconstruct MR image from highly undersampled k-space data. Given the 
undersampled Fourier transform E and acquired data d, MR image f can be reconstructed by considering the following minimization problem 
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where , 0λ η >  are regularization parameters, Ψ denotes wavelet transform, Σ  represents the set of all parent-child groups and s is one of such 
groups. TGV2 is defined as { }2
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parameters 1α  and 0α  were empirically set to be 1 and 2, respectively. To achieve solution stability, we will develop an efficient alternating 
minimization algorithm (AMA) to solve Eq. (1). Let =Ψf v  and =SΨf z , the solution of (1) is equivalent to solving the following problem 
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where 1 2, 0β β >  are constant parameters, S is a binary matrix to duplicate the overlapped entries, is  is the i-th group and p is the total number of 

parent-child groups. The variables v, z and f are essentially separable, AMA attempts to solve Eq. (1) by decomposing Eq. (2) into three simpler 
subproblems. In particular, the v-subproblem is in essence a L0 minimization problem, which can be solved using a hard-thresholding operator; the z-
subproblem can be efficiently solved using a shrinkage formula; the solution of f-subproblem can be obtained using the fast iterative shrinkage-
thresholding algorithm (FISTA) [5]. Thus we can alternatively solve Eq. (2) with respect to v, z and f until the solution converges to an optimal 
solution. The proposed MR image reconstruction method will be compared to WaTMRI [6] and WSNLTV [7]. WaTMRI was developed by 
combining L1 regularized TsWS and TV; WSNLTV was proposed based on wavelet sparsity and non-local TV (NLTV) regularization. 

Results: The reconstruction results for one in vivo brain dataset by 
WaTMRI, WSNLTV and our proposed method are presented in Fig. 1. It 
can be observed that our method outperforms other methods in terms of 
both quantitative and visual quality evaluations. As shown by the arrows, 
the blurred edges generated by both WaTMRI and WSNLTV result in 
visual quality degradation. In contrast, our proposed method is capable of 
preserving edges and fine structural details, which can provide a 
significant improvement in the visual quality. The advantage of our 
reconstruction method is further confirmed by the quantitative quality 
evaluations in terms of PSNR and MSSIM as shown in Figs. 1b and 1c. 
Compared with WaTMRI and WSNLTV, our method could generate a 
great improvement on reconstruction quality for different radial sampling 
rates ranged from 4.73% to 60.57%. In summary, our superior 
reconstruction performance benefits from the L0 regularized tree-
structured hierarchical sparsity and TGV2 regularization. 

Conclusion: In this study, we proposed to implement highly 
undersampled MR image reconstruction by combining both L0 regularized 
TsWS and TGV2. To achieve solution stability, the corresponding 
minimization problem is decomposed into several simpler subproblems. 
Each of these subproblems has a closed-form solution or can be 
efficiently solved using existing optimization algorithms. The 
experimental results on one in vivo brain dataset have demonstrated the 
superior performance of our proposed method. 
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Figure 1: In vivo brain image reconstruction results. (a) Visual 
comparison of different methods for radial sampling of only 15.58% of 
k-space data. The enlarged regions of the images are displayed at the 
bottom-left corner of each image. From (b) to (c): the metrics PSNR 
and MSSIM are respectively used to objectively evaluate the 
reconstruction performance under different radial sampling rates. 
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