
Table 1: True and predicted 
signal ratios. 

Figure 3: A polynomial approximation to the 
dictionary manifold and the projected pure (square 
markers) and mixed (round markers) signals. 

Figure 1: A 3D MRF-FISP dictionary manifold 
as computed using KPCA for dimensionality 
reduction. 
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Target Audience: Scientists interested in 
dimensionality reduction and quantitative MRI, 
including the partial volume effect. 
Purpose: In Magnetic Resonance Fingerprinting 
(MRF)1, quantitative maps of tissue parameters are 
produced by matching acquired MR signals to a 
precomputed dictionary, which is formed using 
Bloch simulation. By varying the MR parameters 
such as the flip angle and repetition times, a unique 
time course is generated for each parameter 
combination. Previously, it was demonstrated that 
linear compression in the time domain is possible 
using singular value decomposition (SVD) to 
compress the dictionary entries to less than 20% of 
the original length without sacrificing accuracy of 
the resulting parameter maps.2 However, since each 
dictionary entry is uniquely defined by two inputs, 

namely T1 and T2, we believe that further compression is possible, resulting in new potentials for 
MRF calculations. Here we propose to compress the dictionary in a nonlinear manner so that 
each entry is uniquely represented by a point on a manifold in R3. To this end, we apply kernel 
principal component analysis (KPCA) 3 to achieve the nonlinear dimensionality reduction to R3 

and then explore the application of this reduced subspace model to the partial volume problem. 
Methods: Consider the MRF-FISP 4 dictionary as an  
n x t complex-valued matrix, where n is the number of dictionary entries, or T1, T2 combinations, 
and t is the number of time points. In this particular example, n = 9820 and t = 2500. To 
compress the dimension t, we apply KPCA using a Gaussian kernel with target dimensionality 
of 3, accounting for T1, T2, and a free parameter. The compressed dictionary, or manifold, is 
shown in Fig. 1, and a two-dimensional projection is shown in Fig. 2. To simulate the partial 
volume problem, two dictionary entries, denoted tissues A and B, are combined in various 
ratios and then projected into R3 using the KPCA kernel and eigenvectors previously computed 
in the dictionary compression. To recover the ratios, we compute the distances between the 
mixed signals and their pure dictionary components on the manifold. In particular, we expect 
that the mixed signals should lie along a linear continuum between the pure tissues A and B on 
the manifold. To achieve this, the mixed signals are projected onto the line between tissues A and B 
and the ratios are computed using these distances. A fifth degree polynomial approximation of the 
manifold is shown in Fig. 3 along with the compressed mixed signals in round dots. The line on to 
which the mixed signals are to be projected is shown in black. 
Results: Two dictionary entries from the FISP sequence were chosen, tissue A with T1 = 1300 ms and 
T2 = 120 ms and tissue B with T1 = 4400 ms and T2 = 500 ms. The entries were combined in the ratios 
shown in the first column of Table 1 and then aliasing was simulated using a one-shot spiral trajectory. 
Gaussian noise was added to the normalized signal. We are able to recover the tissue ratios within 5 
percentage points of the true ratios, as shown in the two columns of Table 1 labeled “Predicted,” 
without performing a matrix inversion at each pixel. 
Discussion:  Due to the nature of the Bloch simulation in MRF, we expect that the dictionary, a complex matrix 
of size n x t, should be compressible to a real matrix of size n x 3, accounting for T1, T2, and a free parameter. 
This compressibility is clearly seen with MRF-FISP using KPCA, as shown in Fig. 1. A promising application to the partial volume problem is also 
presented. As is the case in previously presented works on MRF and partial volume, 5 the tissue types that make up the mixed signals must be known 
a priori, though in future work, we anticipate building this uncertainty into our model.  
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Figure 2: The same manifold as in 
Figure 1, but projected onto the first 
two KPCA components. Four curves 
on the manifold are labeled, 
corresponding to specific values for 
T1 and T2 as shown in the legend. 
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