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Target Audience: Scientists interested in
dimensionality reduction and quantitative MRI,
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produced by matching acquired MR signals to a
precomputed dictionary, which is formed using
Bloch simulation. By varying the MR parameters
such as the flip angle and repetition times, a unique
time course is generated for each parameter
combination. Previously, it was demonstrated that
linear compression in the time domain is possible
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namely T; and T,, we believe that further compression is possible, resulting in new potentials for
MREF calculations. Here we propose to compress the dictionary in a nonlinear manner so that
each entry is uniquely represented by a point on a manifold in R*. To this end, we apply kernel
principal component analysis (KPCA) * to achieve the nonlinear dimensionality reduction to R?
and then explore the application of this reduced subspace model to the partial volume problem.
Methods: Consider the MRF-FISP “ dictionary as an

n x t complex-valued matrix, where » is the number of dictionary entries, or T}, T, combinations,
and ¢ is the number of time points. In this particular example, n = 9820 and ¢ = 2500. To
compress the dimension #, we apply KPCA using a Gaussian kernel with target dimensionality
of 3, accounting for Ty, Ty, and a free parameter. The compressed dictionary, or manifold, is
shown in Fig. 1, and a two-dimensional projection is shown in Fig. 2. To simulate the partial
volume problem, two dictionary entries, denoted tissues A and B, are combined in various

ratios and then projected into R? using the KPCA kernel and eigenvectors previously computed ~ Figure 3: A polynomial approximation to the

in the dictionary compression. To recover the ratios, we compute the distances between the dictionary manifold and the projected pure (square
mixed signals and their pure dictionary components on the manifold. In particular, we expect markers) and mixed (round markers) signals.

that the mixed signals should lie along a linear continuum between the pure tissues A and B on

the manifold. To achieve this, the mixed signals are projected onto the line between tissues A and B

and the ratios are computed using these distances. A fifth degree polynomial approximation of the True Predicted
manifold is shown in Fig. 3 along with the compressed mixed signals in round dots. The line on to AD A B
which the mixed signals are to be projected is shown in black.

Results: Two dictionary entries from the FISP sequence were chosen, tissue A with T; = 1300 ms and 207,80 2279 7721
T, = 120 ms and tissue B with T; = 4400 ms and T, = 500 ms. The entries were combined in the ratios 307,50 5076 4924
shown in the first column of Table 1 and then aliasing was simulated using a one-shot spiral trajectory. 70/.30 0982 3018
Gaussian noise was added to the normalized signal. We are able to recover the tissue ratios within 5 90/.10 8600 1400

percentage points of the true ratios, as shown in the two columns of Table 1 labeled “Predicted,”

without performing a matrix inversion at each pixel.

Discussion: Due to the nature of the Bloch simulation in MRF, we expect that the dictionary, a complex matrix
of size n x t, should be compressible to a real matrix of size n x 3, accounting for T}, Ty, and a free parameter.
This compressibility is clearly seen with MRF-FISP using KPCA, as shown in Fig. 1. A promising application to the partial volume problem is also
presented. As is the case in previously presented works on MRF and partial volume, ° the tissue types that make up the mixed signals must be known
a priori, though in future work, we anticipate building this uncertainty into our model.
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Table 1: True and predicted
signal ratios.
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