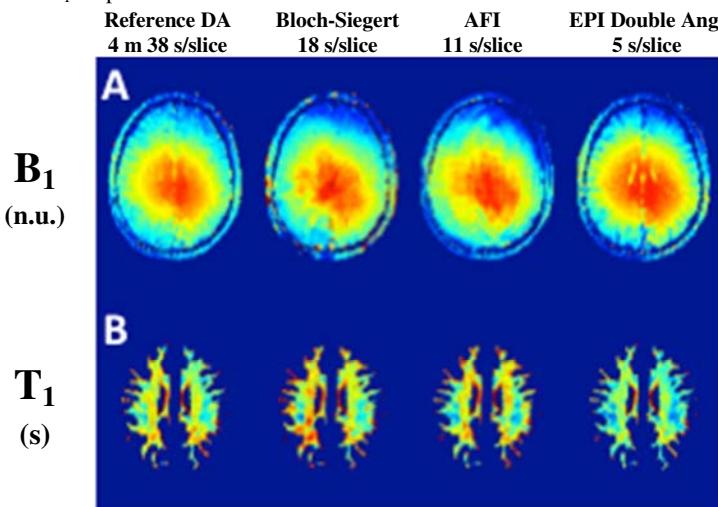


A Comparison of B_1 Mapping Methods for T_1 Mapping at 3T

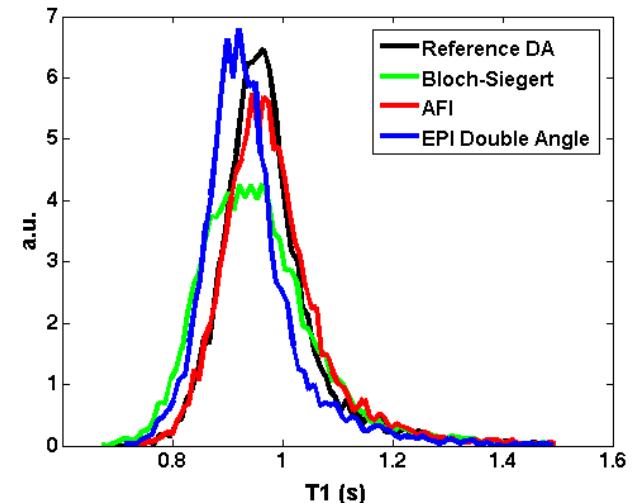

Mathieu Boudreau¹, Christine Tardif², Nikola Stikov¹, and G. Bruce Pike^{1,3}

¹Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, ²Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany, ³Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

INTRODUCTION: B_1 maps are an essential part of most quantitative MRI protocols, including Variable Flip Angle (VFA) T_1 mapping. To achieve whole brain quantitative imaging in reasonable scan times, several novel rapid B_1 methods have been introduced^{1,2}. Recent works have compared several novel B_1 mapping methods used at 3T in simulations³, phantoms⁴, and in vivo⁵. Accelerating B_1 mapping can also be done through fast k-space trajectories, such as EPI, but are sometimes dismissed due to the possibility of distortions associated artifacts⁶, particularly for brain imaging. The aim of this work was to compare VFA T_1 maps in white matter (WM) produced with four B_1 methods: Reference double angle (DA), Bloch-Siegert² (BS), Actual Flip-Angle Imaging (AFI), and DA using a stock scanner spin-echo EPI readout sequence (EPI-DA).

METHODS: Six healthy adult subjects were scanned with a 3T Siemens Tim Trio MRI using a 32-channel receive-only head coil. Axial slices (2x2x5 mm³) were acquired (or extracted from 3D volumes) parallel to the AC-PC line above the corpus callosum. A reference DA B_1 map was acquired using a turbo spin echo readout with TE/TR 12/1550 ms and $\alpha = 60^\circ/120^\circ$. Whole brain 3D optimally spoiled⁷ AFI B_1 maps were acquired with TE/TR 1 3.53/20 ms, $N = 5$, $\alpha = 60^\circ$, spoiling gradient moment $A_G = 450$ mT•ms/m and RF phase increment $\varphi = 39^\circ$. Single slice BS B_1 maps were acquired with TE/TR 15/100 ms, $\alpha = 25^\circ$, 8 ms Fermi Pulse of 500° at ± 4 kHz off-resonance and $K_{BS} = 74.01$ rad/G². Interleaved multi-slice spin-echo EPI-DA whole brain B_1 maps were acquired with TE/TR 46/4000 ms, $\alpha = 60^\circ/120^\circ$, EPI Factor = 9 and echo spacing = 4.18 ms. To further investigate possible distortion artefacts in EPI-DA B_1 maps, a left-hemisphere sagittal slice B_1 map for both DA methods was acquired for one subject. VFA T_1 maps were acquired using an optimally spoiled⁷ 3D gradient echo sequence (TE/TR 2.89/15 ms, $\alpha = 3^\circ/20^\circ$, $A_G = 280$ mT•ms/m, $\varphi = 169^\circ$), and the flip angles were scaled voxel-wise by each B_1 map prior to fitting for T_1 . Whole-brain T_1 MPRAGE images (1x1x1 mm³) were acquired, and tissue classification maps (WM, GM, CSF) were provided via INSECT⁸ with the ICBM-152 atlas. WM tissue masks were resampled to a 2x2x5 mm³ slice using a majority voting analysis; GM and CSF were not included because of partial volume effects due to the voxel size.

RESULTS: Single slice B_1 maps and WM T_1 maps for a single subject are shown in Fig. 1. Figure 2 displays histograms for single slice WM T_1 data that was pooled for all subjects. Linear regression analysis of pooled WM T_1 for each B_1 relative to the reference is shown in Table 1. Figure 3 compares reference DA and EPI-DA sagittal B_1 maps for a single subject. No significant B_1 maps distortions were observed in axial or sagittal EPI-DA B_1 maps.


Figure 1: (A) Single slice B_1 maps from a representative subject. (B) WM VFA T_1 maps using flip angles corrected with each B_1 map.

DISCUSSION: All B_1 methods provided comparable B_1 and VFA T_1 maps. EPI-DA, the fastest of the B_1 maps (5 s/slice), had no observable B_1 artefacts (Figs. 1 and 3), due to careful sequence planning (low EPI factor, long echo spacing). Strong correlations were observed between VFA T_1 maps using all three rapid methods compared to Ref. DA (Table 1). T_1 maps using EPI-DA B_1 maps underestimated T_1 by ~4% (Fig 2., Table 1), but strongly correlated to the Ref. DA.

Transmit B_1 in the brain is typically observed to be a slowly varying function. Interpolating or blurring B_1 maps has been used for both transmit¹ and receive⁶ B_1 , and could remove structural information from the B_1 maps, particularly for maps measured using novel (BS, AFI) or k-space accelerated (EPI-DA) methods. For multi-site or multi-scanner studies requiring whole-brain B_1 maps, EPI-DA could be a good alternative to novel methods, which are not available as stock-sequences on most scanner platforms.

CONCLUSION: All B_1 methods resulted in comparable WM T_1 maps, and all rapid methods strongly correlated with the reference DA map. EPI-DA, the fastest of the techniques derived from a stock scanner sequence, correlated the best with Ref. DA with no observable distortion artefacts. As B_1 maps are expected to be smooth, blurring² or spline smoothing⁹ could be beneficial at improving B_1 maps for quantitative MRI methods (e.g. spline interpolation would remove visible anatomical regions such as the sulci and ventricles in EPI-DA B_1 maps (Fig. 1)).


REFERENCES: [1] Yarnykh V., MRM 57:192-200 (2007) [2] Sacolick et al., MRM 63:1610-26 (2010) [3] Sica et al, Proc. Of ISMRM (2010) [4] Tardif et al., Proc. of ISMRM (2010) [5] Lutti A., MRM 64:229-238 (2010) [6] Wade T. and Rutt B., Proc. Of ISMRM (2007) [7] Yarnykh V., MRM 63:1610-26 (2010) [8] Collins et al. IPMI 1999, LNCS, Vol. 1613, Springer, Heidelberg 210-223 [9] Sled et al., IEEE Trans. Med. Imag. 17:87-97 (1998)

Figure 2: Normalized pooled histograms of single slice WM T_1 values for 6 healthy subjects (bin width = 10 ms).

	Ref. DA	BS	AFI	EPI-DA
Pearson p	-----	0.963	0.972	0.984
Fit slope	-----	0.993	1.002	0.981

Table 1: Linear regression analysis of the pooled WM T_1 values (6 subjects) for each B_1 method relative to the reference DA B_1 method.

Figure 3: Sagittal (left hemisphere) B_1 maps for a single subject using the reference and EPI double angle methods.