Imaging T₁, T₂ and proton density with minimum possible acquisitions

Guan Wang^{1,2}, Abdel-Monem M. El-Sharkawy², and Paul A. Bottomley^{1,2}

¹Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, United States, ²Russell H. Morgan Dept. of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States

TARGET AUDIENCE. MRI clinicians and scientists interested in efficient, complete T₁, T₂, proton density (PD) characterization.

PURPOSE. The T_1 and T_2 relaxation times, and proton density (PD) contain almost all of the ¹H MRI information routinely used in clinical diagnosis and research, but are seldom imaged directly. In addition, their accuracy depends critically on B₁-field homogeneity, making field mapping essential, especially at higher field strengths. Here we propose a novel 'Tri-FA' method to measure and image T_1 , T_2 , PD and B₁ with only 4 acquisitions–the minimum possible. This 'Tri-FA' method encodes T_1 with 3 varied flip-angles (FA), and T_2 via long 0° BIR-4 pre-pulses instead of spin-echoes. 2D and 3D 'Tri-FA' MRI is demonstrated *in vitro* and *in vivo* at 3 Tesla.

METHODS. It was recently noted (1) that self-refocusing B₁-independent rotation (BIR-4) adiabatic pulses are prone to intra-pulse T₂ decay that depends on the BIR-4 pulse duration (τ), B₁ amplitude, sweep frequency, but is independent of BIR-4 FA. Using four spoiled gradient-echo sequence (SPGR) acquisitions, the 'Tri-FA' measures signals S₁₋₃ acquired with the same TR (eg, 600ms) but varied excitation FAs (θ_{1-3} =30°, 80°, 140°), and a 4th signal, S₄ acquired with a τ =20ms 0° BIR-4 prepulse (excitation FA= θ_1 , TR'=1036ms). It can be shown that: S₁₋₃=M₀(1-E₁)sin(q. θ_{1-3})/(1-E₁.cos(q. θ_{1-3})), and S₄=M₀(1-E₁').sin(q. θ_1)E_p./(1-E₁'.cos(q. θ_1).E_p), where q reflects the B₁ field inhomogeneity. T₁, T₂, M₀, and q are solved from S₁₋₄.

Tri-FA was validated in 2D and 3D MRI studies on a clinical *Philips* 3T scanner. *In vitro* validation was performed on 11 CuSO₄ doped agarose phantoms with $186 \le T_1 \le 1332$ ms, $13.2 \le T_2 \le 227$ ms. *In vivo* brain studies were performed on healthy consenting adult volunteers (3D matrix = 224x224x5, FOV= 200x200x25mm³; 2D matrix=224x224, FOV=200x200x5mm³). Tri-FA measurements were compared with the central slices of standard 3D spin-echo (SE) T₂, partial saturation (PS) T₁, PD maps and B₁ maps acquired by actual flip-angle imaging (AFI)(2). 2D Tri-FA measurements were corrected for slice profile distortions.

RESULTS. The measured T_1 , T_2 , PD and B_1 of the phantoms are plotted vs. the standard values in Fig.1(a-d). The T_1 , T_2 , B_1 , and PD errors(%) vs the standard values is $2.5\%\pm14\%$, $3.6\%\pm9\%$, $0.9\%\pm8\%$, and $3.6\%\pm4\%$, respectively. *In vivo* 3D results from a volunteer are shown in Fig.1(e-h). Mean (\pm SD) errors are $-4.8(\pm10.4)\%$ for T_1 , and $1.1(\pm12.5)\%$ for T_2 , measured in the boxes annotated in Fig.1(e). For 2D Tri-FA brain MRI, errors are $-3.6(\pm6)\%$ for T_1 , and $-8.5(\pm3.6)\%$ for T_2 after slice profile correction. Analysis shows Tri-FA provides considerably higher accuracy/unit time vs other parameter mapping methods (DESPOT1/2, etc; not shown).

Conclusion. The novel Tri-FA method offers a minimum-acquisition option for imaging single-component T_1 , T_2 , and PD, with B_1 -inhomogeneity self-correction. Tri-FA was validated in 3D applications at 3T, as well as 2D MRI where standard methods can fail.

References. 1. Wang G et al. J Magn Reson 214(2012): 273 – 280. 2. Yarnykh VL. Magn Reson Med 57(1):192 – 200 (2007) Grant support: NIH R01 EB007829.

Fig 1. (a-d) In vitro Tri-FA results vs. standard values in 11 phantoms. (e-h) Color coded in vivo 3D Tri-FA maps for a volunteer.