Effects of NMR invisible oriented perturbers on signal phase
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Introduction: The growing use of images based on measurements of the gradient echo signal phase in susceptibility weighted imaging and
quantitative susceptibility mapping (QSM)', means that it is increasingly important to understand the effect of susceptibility inclusionson the
measured signal phase. Generally in QSM it is assumed that the measured phase/frequency variation reflects the summed effect of the dipolar fields
generated by the volume average susceptibility in each voxel. Recently, however, it has been shown that long cylindrical inclusions that generate no
NMR signal have no effect on the measured signal phase when confined to a cylindrical region? and more generally
that the phase variation produced by shaped NMR-invisible perturbers depends on their shape® in a short echo time
regime. In these circumstances, the contribution to the average phase/frequency offset in a voxel due to the material
inside the voxel does not necessarily reflect its average magnetic susceptibility. This is important because there are

many examples of oriented inclusions (e.g.myelin sheaths, iron deposits and pialblood vessels), which affect the g 01

VF=1%

phase of the signal measured from tissues. In previous work, the effect of randomly-oriented spheroids on the signal — = 0vumn | \‘liiz\\\\
magnitude and phase has been investigated in detail, including the effect of diffusion®’, while the effect of oriented o |—dit=sivoums
spheroids has been considered to some extent, but only in the absence of diffusion’. Here we use numerical VF=2%
simulations to carry out a detailed evaluation of the effect of prolate spheroids on the signal phase. DOV

Theory and Methods: A prolate(needle-like) spheroid is produced by rotating an ellipse with major and minor Figure I Phase evolution for different D-values
axes of length 2¢ and 2a (with ¢ = ga and g> 1)about the c-axis. We consider single prolate spheroids of °W

susceptibility, %, embedded in a spherical volume, whose radius, R, is set by the desired volume fraction g-o.osr \\_/(“\ L
(VE= a’c/R%) of the perturbers: with the applied magnetic field, By, aligned with the long axis of the & ol e T =
spheroid. The field perturbation outside the spheroid, dB(r), was calculated using the expression previously %

described by Sukstanskii and Yablonskiy*. To calculate the signal evolution, 1 million “particles” were 35 '

randomly seeded in the voxellatedspherical volume (R =150 voxels) , excluding the spheroid, and then each § -02f

underwent a 3D random walk with time-step, &t, accumulatingposition-dependent phase,ydBdt at each time
point. Random-walking particles were reflected at the boundary of the spheroid and particles exiting the

spherical volume were randomly repositioned on the sphere’s surface. The signal at each time-point was 0% 10 20 30 40
found by summing the complex signals from all particles. We focus on the summed signal’s phase, ¢, and  Figure 2: frequency evolution for diferent diffusion

. _ . . . . . _ _ -7  ratesand aspect ratios — thick lines (n =64), dashed line(
instantaneous angular frequency, ® = d¢/dt.Simulations were carried out in Matlab, with B, = 7T, 3 = 10 1=16): continuous line (no diffusion).
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(dwy=yyxBy = 187 s cla= 1 (sphere), 1.5, 2,2.5, 3 and 4, and VF = 1 or 2% (corresponding to spherical | |Towimste-e
inclusions of radius 32 and 41 voxels). The diffusion rate was varied by changing the time step &t = n’ Il
'ms, with n =1, 2, 4, 8, 16, 32 or 64 (D = [voxel width]2/28t) and simulations were also carried out with

no diffusion. The time range considered was 0-0.25s, yielding a max value of dwgxt ~ 47.

Results: Figure 3 (inset) shows the imaginary part of the signal(with D= 0) in an x-zplane through the

Normalised Frequency

centre of a spheroid with c¢/a = 2 and VF = 2% att= 0.25s, giving an indication of the form of the field c_ 9 |
variation and the extent of dephasing. Figure 2 shows the variation of the phase of the signal with dwyxt ‘

for spheroids with c/a = 2 and varying diffusion rates, for the two different VF’s. As expected the rate of s |
phase accumulation increases with VF, shows distinctive variation with 7 for no diffusion and is most ) ) ) . ) )
affected by diffusion at longer times. Figure 3 shows the variation of scaled angular frequency, o/(8w, weomE e e e

XVF) with 8w, xfor spheroids with varying aspect ratios and for different rates of diffusion (VF =1 %).  Figure 3: frequency vs D,e-1/3:inset = imaginary signal map
It is evident that the frequency is dependent on the spheroid aspect ratio and shows an oscillation with time, which is damped by diffusion.
Discussion: Three key length scales are important in the simulations: L = 2¢ = the longest dimension of the spheroid; Lj, = /6Dt the diffusion
displacement at time, #; and L, = L3/8wyt/q% which is the radial distance from the spheroid’s centre at which the phase variation due to an
equivalent dipole is approximately, 27t over a spherical surface. For small §y x? the average frequency depends on the average frequency offset in
the volume outside the spheroid, which has previously’ been shown to vary as SwexVF x (D,-1/3) for a spherical volume. Here, D,, is the
spheroid’s demagnetising factor, which varies from 1/3 for a sphere to ~ 1 for a long thin needle-like spheroid. Figure 4 confirms that the scaled
frequency /(8w xVF) at ¢ ~ 0 is proportional to (D,-1/3) and shows that the scaled frequency shows a similar dependence at large values of Sy xt
for the highest diffusion rates. This also evident from Fig. 3, which shows that the frequency is time independent for the highest diffusion rate. This
behaviour arises because Lp> L for times when dwy x> 27, so that the diffusion effectively averages the frequency over the volume. Oscillations of
the frequency occur when Ly is not significantly larger than L, and a region of significant dephasing (where the phase varies over many multiples of
n) is produced around the spheroid (Fig. 1). Although this regime was not explored in these simulations, it is expected® that all spheroids will
produce a similar frequency offset of 0.053 3wy xVF when L>>L, Ly,

Conclusion: These findings confirm that the average frequency offset produced by oriented, NMR-invisible inclusions is strongly dependent on the
shape of the inclusions even in the presence of diffusion and does not therefore simply relate to the average volume susceptibility. In the short (8w
xt<< 1) and long-time (L >> L, L,) regimes the frequency offset has a simple dependence on the demagnetising factor of spheroidal inclusions.
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