
Figure 1: Phase evolution for different D-values  
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Introduction:  The growing use of images based on measurements of the gradient echo signal phase in susceptibility weighted imaging and 
quantitative susceptibility mapping (QSM)1, means that it is increasingly important to understand the effect of susceptibility inclusionson the 
measured signal phase. Generally in QSM it is assumed that the measured phase/frequency variation reflects the summed effect of the dipolar fields 
generated by the volume average susceptibility in each voxel. Recently, however, it has been shown that long cylindrical inclusions that generate no 
NMR signal have no effect on the measured signal phase when confined to a cylindrical region2 and more generally 
that the phase variation produced by shaped NMR-invisible perturbers depends on their shape3 in a short echo time 
regime. In these circumstances, the contribution to the average phase/frequency offset in a voxel due to the material 
inside the voxel does not necessarily reflect its average magnetic susceptibility. This is important because there are 
many examples of oriented inclusions (e.g.myelin sheaths, iron deposits and pialblood vessels), which affect the 
phase of the signal measured from tissues. In previous work, the effect of randomly-oriented spheroids on the signal 
magnitude and phase has been investigated in detail, including the effect of diffusion4,5, while the effect of oriented 
spheroids has been considered to some extent, but only in the absence of diffusion3. Here we use numerical 
simulations to carry out a detailed evaluation of the effect of prolate spheroids on the signal phase. 
 

Theory and Methods:  A prolate(needle-like) spheroid is produced by rotating an ellipse with major and minor 
axes of length 2c and 2a (with c = qa and q> 1)about the c-axis. We consider single prolate spheroids of 
susceptibility, χ, embedded in a spherical volume, whose radius, R, is set by the desired volume fraction 
(VF= a2c/R3) of the perturbers: with the applied magnetic field, B0, aligned with the long axis of the 
spheroid. The field perturbation outside the spheroid, δB(r), was calculated using the expression previously 
described by Sukstanskii and Yablonskiy4. To calculate the signal evolution, 1 million “particles” were 
randomly seeded in the voxellatedspherical volume (R =150 voxels) , excluding the spheroid, and then each 
underwent a 3D random walk with time-step, δt, accumulatingposition-dependent phase,γδBδt at each time 
point. Random-walking particles were reflected at the boundary of the spheroid and particles exiting the 
spherical volume were randomly repositioned on the sphere’s surface. The signal at each time-point was 
found by summing the complex signals from all particles. We focus on the summed signal’s phase, φ, and 
instantaneous angular frequency, ω = dφ/dt.Simulations were carried out in Matlab, with B0 = 7T, χ = 10-7 

(δω0 = γχB0 = 187 s-1) c/a= 1 (sphere), 1.5, 2, 2.5, 3 and 4, and VF = 1 or 2% (corresponding to spherical 
inclusions of radius 32 and 41 voxels). The diffusion rate was varied by changing the time step δt = n-

1ms, with n =1, 2, 4, 8, 16, 32 or 64 (D = [voxel width]2/2δt) and simulations were also carried out with 
no diffusion. The time range considered was 0–0.25s, yielding a max value of δω0×t ~ 47.  
 

Results: Figure 3 (inset) shows the imaginary part of the signal(with D= 0) in an x-zplane through the 
centre of a spheroid with c/a = 2 and VF = 2% att= 0.25s, giving an indication of the form of the field 
variation and the extent of dephasing. Figure 2 shows the variation of the phase of the signal with δω0 ×t 
for spheroids with c/a = 2 and varying diffusion rates, for the two different VF’s. As expected the rate of 
phase accumulation increases with VF, shows distinctive variation with t for no diffusion and is most 
affected by diffusion at longer times. Figure 3 shows the variation of scaled angular frequency, ω/(δω0 

×VF) with δω0 ×tfor spheroids with varying aspect ratios and for different rates of diffusion (VF =1 %). 
It is evident that the frequency is dependent on the spheroid aspect ratio and shows an oscillation with time, which is damped by diffusion.  
 

Discussion: Three key length scales are important in the simulations: L = 2c = the longest dimension of the spheroid; LD = √6ݐܦ the diffusion 
displacement at time, t; and Lφ = ܮඥ߱ߜ଴ݍ/ݐଶయ   which is the radial distance from the spheroid’s centre at which the phase variation due to an 
equivalent dipole  is approximately, 2π over a spherical surface. For small δω0 ×t the average frequency depends on the average frequency offset in 
the volume outside the spheroid, which has previously3 been shown to vary as δω0×VF ×  (Dze-1/3) for a spherical volume. Here, Dze is the 
spheroid’s demagnetising factor, which varies from 1/3 for a sphere to ~ 1 for a long thin needle-like spheroid. Figure 4 confirms that the scaled 
frequency ω/(δω0 ×VF) at t ~ 0 is proportional to  (Dze-1/3) and shows that the scaled frequency shows a similar dependence at large values of  δω0 ×t  
for  the highest diffusion rates. This also evident from Fig. 3, which shows that the frequency is time independent for the highest diffusion rate. This 
behaviour arises because LD> L for times when δω0 ×t> 2π, so that the diffusion effectively averages the frequency over the volume. Oscillations of 
the frequency occur when LD is not significantly larger than  Lφ and a region of significant dephasing (where the phase varies over many multiples of  
π)  is produced around the spheroid (Fig. 1).  Although this regime was not explored in these simulations, it is expected4 that all spheroids will 
produce a similar frequency offset of 0.053 δω0 ×VF when Lφ>>L, LD 
 

Conclusion: These findings confirm that the average frequency offset produced by oriented, NMR-invisible inclusions is strongly dependent on the 
shape of the inclusions even in the presence of diffusion and does not therefore simply relate to the average volume susceptibility. In the short (δω0 

×t<< 1) and long-time (LD >> L, Lφ) regimes the frequency offset has a simple dependence on the demagnetising factor of spheroidal inclusions.  
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Figure 2: frequency evolution for different diffusion 
ratesand  aspect  ratios – thick lines (n =64), dashed line( 
n =16); continuous line (no diffusion). 

Figure 3: frequency vs Dze-1/3;inset = imaginary signal map 
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