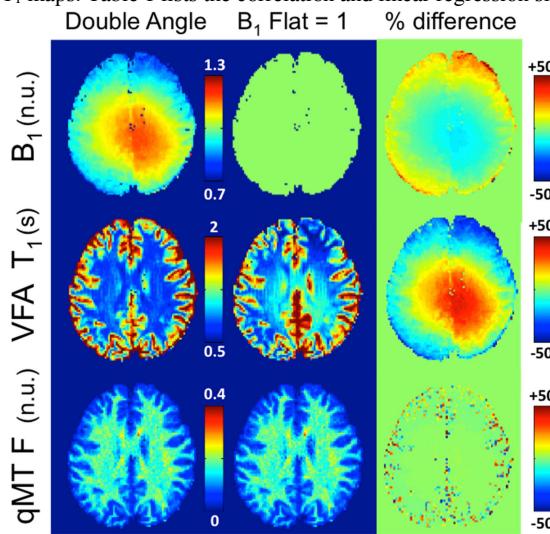


A B₁ Insensitive qMT Protocol

Mathieu Boudreau¹, Nikola Stikov¹, and G. Bruce Pike^{1,2}

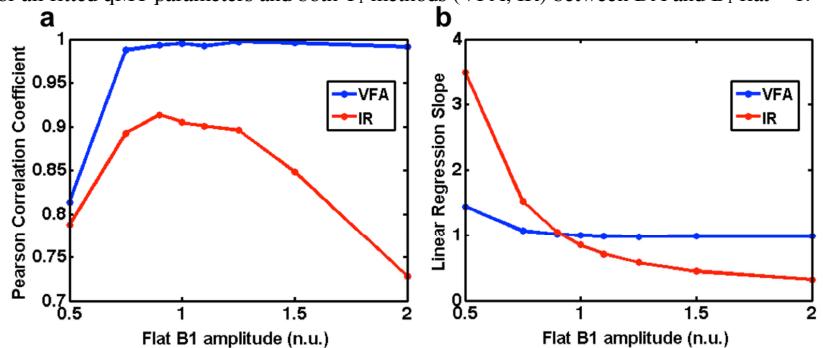

¹Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, ²Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

INTRODUCTION: Quantitative magnetization transfer (qMT) imaging requires several additional measurements to correct for instrumental biases (B₀, B₁) and to constrain parameters in the fitting model (T₁). These three extra measurements are typically independent of each other, but certain T₁ mapping techniques also require B₁ maps (e.g. variable flip angle – VFA¹). In this case, B₁ is used twice before fitting the qMT parameters: to correct the flip angles for T₁ mapping, and to scale the nominal MT saturation powers. Inaccuracies in B₁ would propagate to the fitting of the qMT parameters through two pathways – through errors induced in T₁, and errors in MT saturation powers. This work demonstrates that for the Sled and Pike qMT model², certain qMT parameters (F – pool ratio, and T_{2r}) are insensitive to a large range of B₁ inaccuracies when using VFA for T₁ mapping.

METHODS: Three healthy adults were scanned with a 3T Siemens Tim Trio MRI using a 32-channel receive-only head coil. Single slices (2x2x5 mm³) were acquired parallel to the AC-PC line, superior to the corpus callosum. Whole-brain T_{1w} MPRAGE images (1x1x1 mm³) were acquired for image registration and skull stripping. **T₁ maps:** VFA T₁ maps were acquired using an optimally spoiled³ 3D gradient echo sequence (TE/TR 2.89/15 ms, $\alpha = 3^\circ/20^\circ$, A_G = 280 mT•ms/m, $\varphi = 169^\circ$), and the flip angles were scaled voxel-wise with each B₁ map prior to fitting for T₁. Inversion recovery (IR) T₁ data was collected from a four inversion time spin echo sequence (TE/TR = 11/1550 ms, TI = 30, 530, 1030, 1530 ms), using an open source robust inversion recovery fitting methodology^{4,5}. **qMT maps:** MT data was acquired using the spoiled gradient echo two-TR (25/60 ms) optimal 10-point protocol for 3T using Gaussian-Hanning MT pulses (the full protocol including the 10 off-resonance frequency and MT saturation power pairs can be found in Levesque et al 2011⁶). qMT parameter maps were fitted using the Sled and Pike model². B₀ was mapped using a two-point phase-difference gradient echo method (TE1/TE2/TR = 4/8.48/25 ms). **B₁ maps:** A double angle (DA) B₁ map was acquired using a turbo spin echo readout (TE/TR12/1550 ms, $\alpha = 60^\circ/120^\circ$). To simulate a wide range of B₁ inaccuracies, flat (homogenous) B₁ maps were simulated for a range of values (B₁ Flat = 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2 n.u.). VFA T₁ maps and corrected MT saturation powers were then calculated from these flat B₁ maps to provide a wide range of inaccurate T₁ and MT saturation powers. Note that VFA T₁ calculated with a flat B₁ factor of 1 is equivalent to fitting VFA T₁ maps using the nominal flip angles.

qMT maps were fitted with combinations of B₁ maps using DA and flat B₁, as well as IR T₁ maps and VFA T₁ maps corrected with the corresponding B₁ maps. Voxel data from all subjects were pooled for each qMT/T1/B₁ sets, and linear regressions and correlations were calculated between qMT/T1/(B₁=DA) and qMT/T1/(B₁ Flat) for all B₁ flat maps and both T₁ methods.

RESULTS: Figure 1 shows a comparison between B₁ maps (measured DA and simulated B₁ flat = 1, the latter being equivalent to assuming true nominal angles) for a single subject; VFA T₁ maps calculated using each B₁ map; and fitted qMT F maps. Figure 2 shows the pooled whole brain Pearson correlation coefficients (a) and linear regression slopes (b) for qMT F values between the measured DA B₁ maps and simulated flat B₁ maps, for VFA (blue) and IR (red) T₁ maps. Table 1 lists the correlation and linear regression slope for all fitted qMT parameters and both T₁ methods (VFA, IR) between DA and B₁ flat = 1.


Figure 1: A single subject comparison of qMT F maps fitted using DA and flat (B₁ = 1) B₁ maps and VFA T₁ maps corrected using the corresponding B₁ map.

DISCUSSION: As can be observed from Fig. 1, processing qMT F maps using a flat B₁ map (nominal flip angle assumption, large B₁ inaccuracies) and the corresponding VFA T₁ map results in nearly identical qMT F maps using DA B₁ maps, except for cortical regions where partial volume with CSF is present due to the voxel size (2x2x5 mm³). Severe overestimation of B₁ is better tolerated than severe underestimation for the qMT parameter F (Fig. 2). As expected, inaccurate B₁ values lead to severe qMT parameters errors when IR T₁ maps are used (Fig. 2 and Table 1). Poor correlation in R_{1f} values for VFA, and strong correlations for IR R_{1f} (Table 1), can be easily explained because the measured T₁ is used to constrain the fitted R_{1f}².

The exact origin of the erroneous B₁ and VFA T₁ nearly cancelling out in qMT F maps remains to be clarified, and simulations may provide a better understanding this insensitivity. It may be possible that k_f, which has the lowest correlation (Table 1 - VFA), is absorbing some errors instead of F during the fitting procedure, when the effects of inaccurate B₁ and T₁ compensate each other. F has been observed to be the best qMT correlate with myelin content using histology⁷, and some qMT methods have recently been developed to fix most qMT parameters except F to reduce the number of acquisitions⁸. A likely source of the insensitivity of F and T_{2r} to B₁ may also be that the measured MT signal is inversely proportional to the MT saturation powers, while measured MT signal is proportional to T₁, and it can be seen from Figure 1 that B₁ and VFA T₁ are inversely proportional. qMT protocols with different TRs or parameter constrained methods⁸ may be more sensitive to B₁ inaccuracies than the protocol presented in this work.

CONCLUSION: We have demonstrated that qMT F maps fitted using VFA T₁ can be insensitive to B₁ inaccuracies. Thus, faster and lower resolution B₁ maps can be used without sacrificing qMT F accuracy or precision when VFA T₁ maps are used. More work in simulating the effects of B₁ and VFA T₁ inaccuracies on qMT parameter estimation is needed to have a clearer understanding of the limitations of this observation.

REFERENCES: [1] Deoni S. et al, MRM 49:515-526 (2003) [2] Sled J. and Pike G. B., MRM 46:923-931 (2001) [3] Yarnykh V., MRM 63:1610-26 (2010) [4] Barral J. et al, MRM 64:1057-1067 (2010) [5] <http://www-mrsrl.stanford.edu/jbarral/t1map.html> (Accessed: October 2012) [6] Levesque I. et al, MRM 66:635-643 (2011) [7] Schmierer K. et al, JMRI 26:41-51 (2007) [8] Yarnykh V., MRM 68:166-178 (2012)

Figure 2: Pooled (all subjects) whole brain Pearson correlation coefficients (a) and linear regression slopes (b) for qMT F values between the measured DA B₁ maps and simulated flat B₁ maps.

		F	k _f	R _{1f}	T _{2r}	T _{2f}
DA B ₁ , VFA T ₁ vs Flat B ₁ = 1, VFA T ₁	Pearson ρ	0.99	0.32	0.81	0.99	0.92
	Slope	0.99	0.31	0.98	0.95	0.90
DA B ₁ , IR T ₁ vs Flat B ₁ = 1, IR T ₁	Pearson ρ	0.90	0.36	0.99	0.96	0.90
	Slope	0.84	0.37	0.97	1.16	0.89

Table 1: Pooled (all subjects) whole brain Pearson correlation coefficients and linear regression slopes for qMT F values between the measured DA B₁ maps and simulated flat B₁ maps.