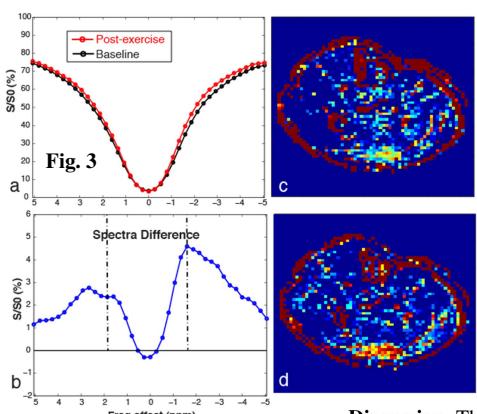

Using CEST to Detect Glycogen-depleting Exercise-Induced Changes In Vivo

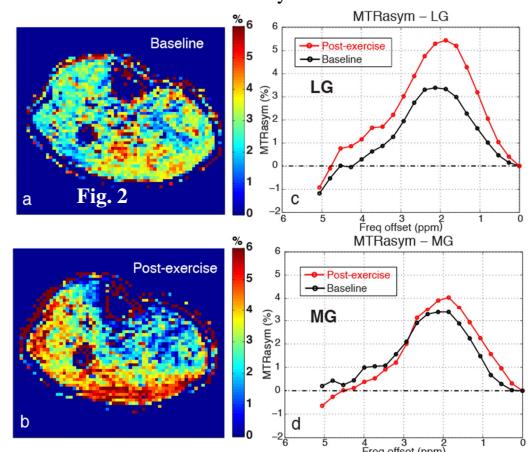
Ying Cheng^{1,2}, Kilian Weiss³, Peter van Zijl^{1,4}, Kathleen Zackowski^{5,6}, and Craig Jones^{1,4}


¹Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States, ²Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States, ³Dept. of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States, ⁴F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States, ⁵Motion Analysis, Kennedy Krieger Institute, Baltimore, MD, United States, ⁶Dept. of Physical Medicine & Rehab, Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

Target audience: Researchers and clinicians interested in applying the CEST technique to detect energy metabolism of musculoskeletal system.

Purpose: Magnetic resonance spectroscopy (MRS) has been applied to follow energy metabolism of the musculoskeletal system at baseline, during exercise and recovery. For example, ³¹P MRS can provide valuable information in particular on muscle high-energy phosphates¹. Natural abundance ¹³C MRS has been applied to detect glycogen synthesis and glycogenolysis via the ¹³C-C1 of glycogen². However, MRS suffers from low sensitivity and concomitant poor spatial resolution for imaging. Chemical exchange saturation transfer (CEST) is a new MRI method that can indirectly detect cellular substances such as metabolites, glycogen, proteins and peptides through exchangeable protons³. Recently, the creatine CEST (CrCEST) effect based on its amine group has been suggested for spatial and temporal mapping of creatine changes in skeletal muscle at 7T⁴; the feasibility of detecting the CEST effect from hydroxyl proton (-OH) groups of glycogen (glycoCEST) was also demonstrated previously in vitro as well as in vivo in animal studies of the liver at 4.7T⁵. However, due to broad resonances (> 500Hz), the CEST effects of OH groups and NH₂ groups overlap in the exchangeable proton signal range at positive frequencies with respect to water and are difficult to separate. However, glycogen may also have a nuclear Overhauser enhancement (NOE) effect in vivo at negative frequency, depending on its chain mobility. In 1998 Gore *et al.* described a glycogen-depleting exercise protocol⁶, and by using ¹³C and ³¹P they reported a 43% decrease of glycogen level but no significant phosphate (PCr and P_i) changes in the gastrocnemius after the exercise. In this study, we applied a similar exercise protocol in calf muscles of healthy human volunteers at 3T, and compared CEST imaging pre- and post- exercise. We were able to detect exercise-induced CEST-MRI changes, which could in principle include glycogen, creatine, and T2 changes.

FOV=140x140cm², matrix size=64x64, slice thickness = 8mm, SENSE factor=2. WASSR images for B0 inhomogeneity correction of the CEST spectra were acquired from -2 to 2ppm with a step size of 14 Hz, and by applying six 100-ms sinc-Gaussian pulses with B_{1rms} of 0.22- μ T and 400- μ s interpulse delay using the same imaging parameters as CEST. **Data Processing:** All data processing was performed using in-house MATLAB (The Mathworks, Natick MA) programs. CEST MTR asymmetry (MTR_{asym}) maps were also generated at the creatine amine proton frequency offset ($\Delta\omega$ = +1.8ppm): MTR_{asym}(+1.8ppm) = [S(- $\Delta\omega$) - S(+ $\Delta\omega$)]/S₀.


Results & Discussion: A representative anatomical image of the lower leg is shown in Fig. 1. Regions are shown for three different muscle groups: soleus, medial gastrocnemius (MG) and lateral gastrocnemius (LG).

In 3 of the 5 subjects, the glycogen-depleting exercise led to an increase in the MTR_{asym} value at 1.8ppm; the other 2 subjects showed negligible change. The MTR_{asym}(+1.8ppm) maps overlaid on the anatomical image at baseline and 1-min after the end of the exercise from one subject are illustrated in Fig 2a, b, respectively, showing regional increases predominantly in the gastrocnemius muscles after the exercise. Average increase in MTR_{asym}(+1.8ppm) from the 3 subjects were 0.6% (\pm 0.1%) and 1.5% (\pm 0.3%) in the medial (MG) and lateral (LG) gastrocnemius muscles, respectively, as can be seen in the pre- and post-exercise MTR_{asym} plot from the LG and MG muscles in Figs. 2c and d, resp. The MTR_{asym} spectra were broad and showed maximum CEST contrast at ~1.8ppm. Fig. 3 compares pre- and post-exercise Z-spectra (Fig. 3a) from lateral gastrocnemius from one subject, who showed large spectral differences (Fig. 3b) at both 1.8ppm and -1.8ppm, images of which are displayed in Figs. 3c and 3d, resp. Importantly, a general narrowing of the Z-spectrum can also be seen. The pre- and post- Z-spectra from soleus (not shown), on the other hand, were closely overlapping, indicating little change after exercise. The averaged ($n = 5$) integrated area in the difference spectra from 1 to 4ppm were 22.5% (\pm 10.3%), 18.9% (\pm 9.3%), and 6.5% (\pm 2.7%) in MG, LG and soleus muscles, respectively, and 23.0% (\pm 8.0%), 25.7% (\pm 10.7%), 10.3% (\pm 5.6%) from -4 to -1ppm from water.

Discussion. The Z-spectra of several volunteers performing this particular exercise regime show Z-spectral narrowing and spectral increases both at positive and negative frequencies with respect to the water resonance. Spectral narrowing of the saturation lineshape can be due to changes in B1, T1 or T2 and since B1 is constant and T1 changes not expected, we attribute narrowing to lengthening of muscle T2, in agreement with results in the literature for this exercise.⁶ Signal increases in the post-pre difference spectrum at higher frequency can be due either to Cr or glycogen depletion, while such increases at lower frequency can be due only to NOE reductions. Of course Cr would be expected to increase during most exercises, leading to more saturation. This was not found in the current exercise regime, in line with expectations⁶. In the present data the exact size of the changes is hard to judge, since the effects of T2 narrowing will have to be deconvolved. These are symmetric with respect to water and thus expected to be visible only in the difference spectra and not in the MTR_{asym}. Our initial conclusion from the data is that T2 increases and glycogen is depleted, in line with the literature⁶. However, ¹³C MRS to monitor glycogen breakdown and ³¹P MRS to check lack of changes in phosphocreatine levels during this exercise regime in our study are needed for ultimate confirmation.

Conclusion: We applied CEST to detect changes induced by a previously described glycogen-depleting exercise. MTR_{asym} maps showed localized changes in the muscle with good spatial resolution. The difference between Z-spectra before and after exercise could reflect combined changes in water T2, creatine and glycogen levels.

Reference: (1) Hoult *et al.* Nature 1974;252:285 (2) Cline *et al.* N Engl J Med 1999;341:240 (3) van Zijl & Yadav MRM 2011;65:927 (4) Kogan *et al.* MRM 2013, Early View on-line; (5) van Zijl *et al.* PNAS 2007;104:4359 (6) Price & Gore. J Applied Physiol. 1998;84:1178 (7) Keupp *et al.* ISMRM 19:710 (8) Kim *et al.* MRM 2009;61:1441. Grant support: RO1 EB015032, P41 EB015909

