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Purpose: Quantitative MRI assessment of myelin has been studied for over twenty years and advances in imaging speed and spatial
resolution have led to the emergence of multi-echo T2 mapping as an important tool for studying neurological disorders including
multiple sclerosis and schizophrenia [1]. The T2 spectrum of water in the brain has multiple components. The fastest decaying
component is associated with myelin-bound water and has a T2 below 40 ms, the intra-cellular and extra-cellular water T2 values in
the 80-120 ms range, and cerebrospinal fluid has a T2 greater than 2000 ms. The very rapid decay of myelin-bound water (MW) has
made it challenging to measure. The most well established approach for extracting MW is with CPMG sequences that acquire multiple
spin echo images for T2 decay curve analyses [2]. Conventionally, MW and free water fractions are identified by fitting a discrete
mixture of impulse functions, each centered at pre-specified T2 values across the range of anticipated T2 values. A linear weight for
each impulse function is fit to the multi-echo T2 data via non-negative least squares (NNLS) [3]. However, this approach of fitting a
discrete mixture of impulse basis functions fails to exploit the continuity of the true distribution of T2. We have developed an alternative
representation in which we use a finite mixture of continuous distributions to describe the complete T2 spectrum. The fraction of the
myelin-bound water is the area under the fast component curve divided by the total area of each component curve. This
representation has the specific advantage that the number of parameters that must be estimated from the data is much smaller. From
32 spin echoes, we estimate 3 parameters per component, for a total of nine parameters, where the NNLS approaches estimate more
than 50 free parameters.

Methods & Materials: We use a model with small number of parameters to characterize the transverse relaxation rate spectrum at
each voxel. We use a mixture of three Wald distributions with unknown mixture weights, mean and shape parameters to represent the
distribution of myelin-bound water, tissue water, and cerebrospinal fluid [4]. The Wald distribution has a Gaussian-like distribution with
positive support and a closed form Laplace transform which are exceptional and distinctive attributes for the representation of
transverse relaxation rate distribution. The parameters of the model are estimated using the constrained variable projection method as
a substantial number of unknown parameters are linear [5]. To compensate for the stimulated echo effect, we disregarded the first
echo in the optimization process. Finally, the estimated parameters of our algorithm are used to estimate the MWF at each voxel. For
validation of the algorithm, we generated a complex T2 spectrum with three components as the ground truth to present MW, the intra-
cellular and extra-cellular water of the brain, and cerebrospinal fluid. We calculated 32 echoes equally spaced from 9ms to 288ms at
different noise levels and estimated MWF using both NNLS and our method 1000 times at each noise level. We have used the
extended phase graph (EPG) algorithm to synthesize CPMG data with different flip angles [6]. In addition, both methods were tested
on an MS patient. T, relaxation measurements were performed on a 3T Siemens TRIO scanner with a single slice (4mm thick), multi-
echo CPMG sequence acquiring 32 echoes with an echo spacing of 9 ms. A 21cm FOV was used with a matrix size of 192x192 (in
plane resolution of 1.1mm) and the total scan time was 9 minutes and 41 seconds. Parameter initialization for each of the estimation
procedures was the same as the simulation experiment.
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accuracy comparable to the ideal scenario. These results show that the mixture of distributions can be used to estimate the MWF with
an accuracy substantially superior to state-of-the-art methods described in the literature.
Figures 2 shows the MWF mapping of one slice of the patient using
our and multi-exponential methods. For both models the
components with T2 shorter than 40ms are used to estimate the
MWEF. The results show that our approach estimated the MWF more
accurately compared to the NNLS method, since the MWF map has
a sharper contrast between white matter and white matter lesion.
Conclusions: We have introduced a novel parametric model to
represent the spectrum of the relaxation rate at each voxel. We
have used both synthetic and real brain images to compare
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superiority of our method. ) ) Figures 2. Qualitative comparison of MWF maps for a MS patient.
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