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Target Audience: This work is intended for scientists developing imaging
protocols and estimation techniques for quantitative relaxometry of myelin and
white matter.

Introduction: Multi-component Driven Equilibrium Single-Pulse Observation of
T1 and T2 (mcDESPOT) [1] is recently proposed technique to perform multi-
component relaxometry and estimate myelin water fraction (MWF) values from
steady-state imaging data, overcoming imaging time and resolution limitations of
conventional spin-echo based techniques. The technique has been applied in a
number of studies (e.g. neurotypical infant development [2], multiple sclerosis [3],
animal models of dysmyelination [4]) and shown to provide biologically plausible
myelin-specific estimates of MWF with reasonable precision. However, the
mcDESPOT 2-pool model may be difficult to estimate, as the parameter space
contains up to 7 free parameters and multiple local minima. To overcome these
difficulties, fitting is typically performed using a global optimization method called
Gaussian contraction (GC) [5], a constrained estimation technique known to be
sensitive to both initial conditions and contraction step size [6]. Recent theoretical
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work has also called into question the reliability of estimates, using the Cramér—Rao lower
bound (CRLB) to evaluate the theoretical precision of the model [6]. In order to investigate
the observed discrepancy between experimental results and theoretical predictions on the

precision of mcDESPOT, we demonstrate an extended CRLB framework that
includes not only the inherent precision of the model but also the effect of GC
constrained estimation and biased estimators.

Theory and Methods: CRLB: Consider a model g(x,6), where x is a vector of
user-selectable parameters (e.g. flip angle, TR, etc) and @ is a vector of model
parameters. In an MR experiment, a series of noisy observations are fitted to this
model to derive an estimate of 6, §. CRLB sets a bound on the variance of these
parameters given an input noise level. Specifically, the minimum achievable
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00; is the Jacobian matrix and =~ 00 is the gradient estimator matrix, and
E[6) is the expectation value operation. Previous work [6] assumed the value of E
to be identity, as is the «case for an unbiased estimate.

variance where

mcDESPOT: A digital phantom was created by generating signals from the
mcDESPOT model with added noise such that the SNR was 500, relative to the
proton density of SPGR. For this phantom, prototypical values in white matter were
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chosen. T1/T2 myelin = 465/26 ms, T1/T2 intracelluar = 1070/117 ms, MWF = 0.00->0.25,

and Tau

180 ms. Scan parameters were TRgpgr = 6.5ms, TRpsspp = 5.0 ms,

ospGr = [34 5679 13 18]°, aysspp = [12 16 21 27 33 40 51 68]°, and bSSFP phase cycling
¢ = [0 180]°. Off-resonance ® = 40 Hz, but was set as a fixed parameter in fitting (assuming
external calibration) for a total of 6 model parameters. B/ was assumed to homogenous, as
it is corrected externally in our protocol. To estimate both Monte Carlo noise performance
as well as the gradient estimator matrix E, 2000 realizations of the digital phantom were
generated (noiseless in the case of E) and fit to the mcDESPOT model using the Gaussian

contraction approach.

Results & Conclusion: Fig. 1 shows the results of Monte Carlo simulation for
the digital phantom. Fig. 2 shows the precision (standard deviation) of mcDESPOT
predicted by CRLB superimposed over the precision observed using Monte Carlo.
The CRLB for unbiased estimates is computed taking only the model into account,
indicating an unusable lack of precision (red line). By numerically computing the
gradient estimator matrix E from the GC constrained estimation and incorporating it
into CRLB, theoretical precision increased by an order of magnitude without the
need for explicitly fixing model parameters (blue line).

References: [1] Deoni, S.C.L. et al. MRM 2008; [2] Deoni S.C.L. et al.
JNEUROSCI 2011; [3] Kitzler H.H. et al. Neuroimage 2012 [4] Hurley S.A. et al.
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Fig 1. Monte Carlo results showing Oanvr vs. Oanvre
Solid line indicates mean, dotted + oyc. MWF is
observed to be nearly linear and monotonically
increasing, with slight underestimation for MWF <
0.10 and slight overestimation above.
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Fig 2. Results of CRLB simulation superimposed over
Monte Carlo. Note extended y-scale. Solid line (red)
indicates + ocrig (Unbiased), and dash lines indicate +
Ocrie-Biased (Diased), taking the effect of GC estimation
into account. Note that CRLB biased is evaluated at
MWF=20. Biased estimation results in an order of
magnitude improvement in CRLB theoretical
precision, yet fails to completely account for observed
precision using mcDESPOT fitting.

ElCRLB
I CRLB Biased
Il Monte Carlo

.M TI_F T2M T2F MWF

Fig 3. Coefficient of variation (stdev/mean) of all
mcDESPOT parameters for the model system at
MWF=0.20. Results from left to right show CRLB
unbiased (red), CRLB biased (blue), and MC (black).
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