

A Model-based Reconstruction Technique for Fast Dynamic T₁ Mapping

Johannes Tran-Gia¹, Sotirios Bisdas², Herbert Köstler¹, and Uwe Klose²

¹Institute of Radiology, University of Würzburg, Würzburg, Germany, ²Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany

Target Audience: Researchers & clinicians working in the field of quantitative MRI, MR relaxometry, dynamic T₁ mapping or brain MRI.

Purpose: To present a technique for dynamic T₁ mapping with a temporal resolution of up to one parameter map every 7.2 seconds for applications such as dynamic contrast enhanced (DCE) MRI.

Methods: The approach is illustrated in Fig. 1. It is based on the application of multiple global inversion pulses, each followed by a radial Look-Locker (LL) FLASH acquisition and a waiting period (i.e. 3s) to enable an additional T₁ relaxation before the next inversion. Each of these acquisitions will be referred to as one IR frame in the following. The signal during the IR LL FLASH acquisition follows a mono-exponential T₁^{*} relaxation $M(t) = M_0^* - (M_0 + M_0^*) \cdot \exp(-t/T_1^*)$. The previously proposed IR-MAP^[1] technique uses this knowledge for a model-based reconstruction of the relaxation process of each individual IR frame, yielding M₀, M₀^{* and T₁^{* in every voxel and for every IR frame. If the magnetization equals -M₀ directly after inversion, T₁ can be calculated using $T_1 = T_1^* \cdot [(M_0 + M_0^*)/M_0^* - 1]$ ^[2]. Although this might be the case for the first IR frame, short waiting periods of regular T₁ relaxation can result in an insufficient relaxation of voxels with larger T₁ in subsequent inversions, introducing systematic errors in the above T₁ calculation. Therefore, an iterative method had to be applied to correct these errors^[3]. It uses the precisely known proportion of T₁^{*} and T₁ relaxation within each IR frame to find a set of underlying parameters M₀ and T₁ best modeling the observed relaxation. IR-MAP and T₁ correction are performed separately for each IR frame, delivering a dynamic series of T₁ maps.}}

All experiments were carried out on a 3T whole-body scanner (Magnetom Trio, Siemens AG, Germany). A validation study was performed using a phantom consisting of 7 vials with different contrast agent (Resovist®, Bayer Schering Pharma AG, Germany) concentrations. A set of 5 subsequent shots of an IR-LL FLASH sequence (FOV = 250×250mm², slice thickness = 10mm, TE = 1.89ms, TR = 4.24ms, $\alpha = 7^\circ$) with a Golden Ratio^[4] radial k-space trajectory (1000 radial projections, 128 readout samples, total acquisition time = 4.2s) was applied for data acquisition, each followed by a waiting period of 3s. After data collection, 50 IR-MAP iterations, followed by 100 iterations of the T₁ relaxation correction were

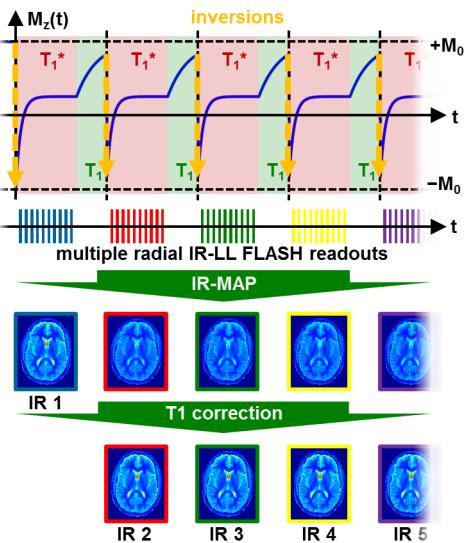


Fig. 1: Acquisition & reconstruction scheme.

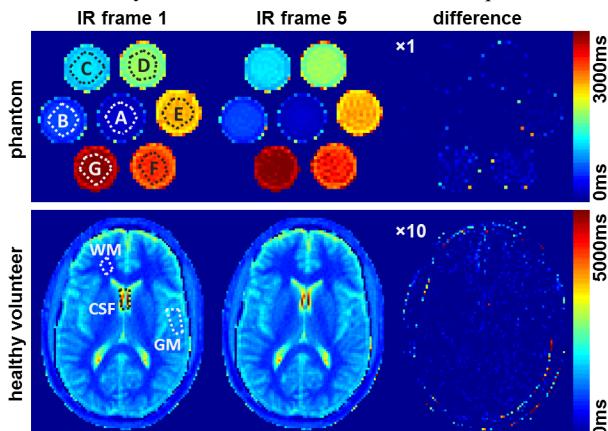


Fig. 2: T₁ maps of phantom and HV measurements.

Results & Discussion: Figure 2 shows T₁ maps of the 1st and 5th IR frames as well as their differences for the phantom (top) and the HV measurement (bottom). Even at a 10-fold magnification, differences in the HV T₁ maps remain negligible. The results of the ROI analysis listed in Table 1 quantitatively underline this consistency. For the HV measurement, values of white matter (WM), gray matter (GM) and in the cerebrospinal fluid (CSF) are in a very good agreement for both IR frames. The first 12 T₁ maps of the DCE MRI experiment are shown in Fig. 3. The functionality of the T₁ correction is indicated by the fact that areas with large T₁ values (such as the CSF in the ventricles) where an insufficient relaxation period would usually lead to errors in T₁ remain unchanged throughout the time series. As expected, T₁ in areas where the contrast agent accumulates (such as the lymphoma in our patient) is significantly lowered after the contrast agent injection.

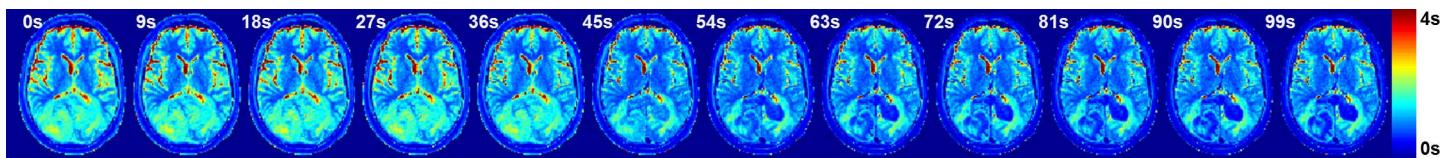


Fig. 3: T₁ dynamic after contrast agent injection in a patient with brain tumor.

Conclusion: A setup for dynamic parameter mapping with a temporal resolution of up to 7.2s is presented. It uses the previously presented IR-MAP technique^[1] to reconstruct relaxation curves for successive inversions, each followed by a radial Look-Locker FLASH acquisition and a waiting time of 3s for relaxation. After a correction of T₁ errors caused by an insufficient relaxation between successive inversions^[3], this allows monitoring T₁ variations over time, which is desirable in many applications such as dynamic contrast enhanced MRI.

Acknowledgements: Johannes Tran-Gia was supported by a grant of the German Excellence Initiative to the GSLS, University of Würzburg.

References: [1] Tran-Gia et al., Proc ISMRM 21:2454 (2013), [2] Deichmann et al., J Magn Reson 96:608-612 (1992), [3] Siversson et al., J Magn Reson 30:834-841 (2009), [4] Winkelmann et al., IEEE T Med Imaging 16:68-76 (2007).