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Purpose: Tissue parameter mapping shows substantial promise for improved disease characterization. For example, T1 and T2 changes correlate 
with pathology in tumors, stroke, and cardiomyopathy. However, long acquisition times have slowed the adoption of parameter mapping. Several 
measurements are required along the parameter encoding direction to compute an accurate parameter map; the classic example is imaging at multiple 
TEs for T2 mapping. Accelerated parameter mapping methods based on compressed sensing have recently been introduced and can achieve 
acceleration rates of 4-8 [1,2]. These methods adopt the traditional paradigm of image formation followed by parameter estimation and use the 
underlying sparsity of the signal evolution to accelerate image acquisition. The goal of this study was to explore a new paradigm of directly 
estimating the parameter map from the k-space data itself, thus combining image reconstruction and optimal parameter estimation. The resulting 
method yields high acceleration rates, improved accuracy, and fast parameter map reconstruction.   
Methods: In this study, we applied the unscented Kalman filter (UKF) to accelerate T2 mapping. The unscented Kalman filter is an optimal method 
for estimating the state of a nonlinear system from noisy measurements [3]. The central idea of our method is that the parameter, T2, is the state of 
the system, and our task is to estimate that state at each pixel. In MRI, we do not directly observe the parameter, but rather measure signals that are 
nonlinear functions of the parameter. We model this measurement process and use the UKF to recursively improve our estimate of the system state.  
The resulting parameter estimate is optimal in a least-squares sense when all of the data has been processed. 
The UKF describes the evolution of the system state and the measurement of the system using the following recursive relationships: ܶ2௞ାଵ ൌ ݂ሺܶ2௞,ݓ௞ሻ ൌ ܶ2௞                       ݖ௞ାଵ ൌ ݄ሺܶ2௞, ௞ሻݒ ൌ ି݁ߩ௞ܨ ೟ೖ೅మೖ ൅  ௞ is a Fourier transform with anܨ .is the acquired data ݖ is the state transition function (unity in this case), ݄ is the measurement function, and ݂ ݒ
under-sampling pattern defined for each time ݐ௞. ݒ is measurement noise, assumed to be white Gaussian noise. ߩ is the proton density. We studied 
two different versions of the UKF. In the single UKF (S-UKF), we assumed that the proton density is known via a separate measurement and 
estimate T2 as shown here. In the double UKF (D-UKF), both T2 and proton density are included in the system state and estimated. The UKF 
proceeds through a series of time update and measurement update equations as described in [3].   
Simulated and experimental data acquisition was performed using a 2D multiple-contrast Cartesian spin echo pulse sequence.  Localization along the 
readout direction was performed using a 1D FFT prior to the UKF [4].  Data was retrospectively under-sampled in ky-parameter space by factors of 
2-8 from the origin fully sampled. For quantitative evaluation of parameter estimation accuracy, an analytical phantom [5] was used to simulate the 
T2 mapping acquisition, reconstruction and parameter estimation process. 4 ROIs were selected with T2 values of 50, 80, 120, 250 ms, covering the 
range of values expected in gray and white matter. Experimental volunteer data was collected using a Siemens 3T Trio scanner with a 12-channel 
head coil with the following parameters: TR 2.5 s, slice thickness 5 mm, FOV 220 × 220 mm and matrix size 192×192. 70 spin echoes were acquired 
with echo spacing of 5.5 ms. T2 maps calculated using S-UKF, D-UKF and compressed sensing with K-SVD [2] were quantified by comparison to 
fully sampled data using normalized RMS error (NRMSE), structural similarity index (SSI), and SNR. Computation time was recorded for each 
method.  Data processing and image reconstruction were performed using MATLAB 2012b. 

  

Figure 1. Numerical phantom simulation. Top: T2 maps and resulting error with 
under-sampling rate 8 for the three methods. Bottom: NMRSI, SSE and SNR for 
under-sampling rates 2-8. With T2 and proton density estimation, D-UKF yields 
lower T2 map estimation error and better similarity and SNR than CS with K-SVD.  
Given prior knowledge of proton density, S-UKF improves the T2 map further. 

Figure 2. Experimental T2 parameter mapping. Top: T2 
maps and resulting error with under-sampling rate 8. 
Bottom: NMRSE and SSI for under-sampling rates 2-8.  
D-UKF yielded more accurate T2 maps with higher 
structural similarity than CS with K-SVD.  

Results:  The results are summarized in Figs. 1 and 2 and in the Table.  The D-UKF 
yielded more accurate T2 maps than CS at all under-sampling rates for both simulated 
and experimental data.  With known proton density, the S-UKF improves the estimation 
performance further. The computation time was shorter for D-UKF and S-UKF than CS. 
Discussion: By combining image reconstruction and parameter estimation, the unscented 
Kalman filter enables 8X-accelerated parameter mapping with excellent accuracy and 
short computation time. The method requires no regularization parameters. UKF methods 
can easily be adapted to estimate other parameters, including T1.   
Reference:  1. Block et al. IEEE Trans Med Imaging, 2009;28:1759-1769. 2. Doneva et al. MRM 2010;64:1114-1120. 3. Wan et al. IEEE AS-SPCC, 
2000;153-158. 4. Feng et al. MRM 2012;69:1346-1356. 5. Guerquin-Kern et al. IEEE Trans Med Imaging. 2012;31:626-636.  
 

Computation time  
 CS D-UKF S-UKF 
Single iteration (s) 11.5 1.05 0.26 
Number of iteration 10-50* 100 100 
Map calculation (s) 48.5 0 0 
Total time (s) 163.5-623.5 105 26 

*Doneva et al. [2] suggested 6-35 iterations 
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