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INTRODUCTION: Accelerating the acquisition process of T2 mapping via sparse sampling has drawn considerable attention recently [1-6]. Prior knowledge such
as image sparisty [7] and spatiotemporal partial separability [8] has been exploited widely so as to suppress the artifacts associated with undersampling. However,
due to non-ideal conditions in practical settings (i.e., insufficient sparsity/rank and coherent sampling), system errors occur in the T2-weighted image series and the
subsequent relaxation map especially with high reduction factors and noisy measurements. In this work, we address this problem by integrating the prior information
(i.e., exponential functions) on the temporal signals into the image reconstruction step. This is in contrast to the conventional wisdom where the image reconstruction
and parameter mapping are performed independently. Specifically, we add linear predictability [9] as a nonlinear filter to constrain the exponential behavior of the
temporal signal which may be disturbed during sparse reconstruction. The proposed method was evaluated on an in-vivo brain dataset and shows promising results.

THEORY AND METHOD: The signal function p(r, tm) of a T2-weighted image series generated by a Carr-Purcell-Meiboom-Gill(CPMG) spin echo can be

L
written as: p(r,tm) :po(r)Zexp[—mATE/Tzv, (r)+i0(r)} (1), where po(r) and T, (r) represent the proton density and T2 map respectively. 0(r) is the
1=1

phase term which is assumed to be the same for all the images. The r and ¢, =mATE denote spatial coordinate and the m -th echo time, ATE is the echo

spacing, L denotes the number of linearly combined exponential terms, which is application dependent. According to Eq. (1), p(r, tm) is linearly predictable:

r, m Z:ozZ plr.t,. , and a Hankel matrix can be formed for each spatial location:

Algorithm 1 CS-LP reconstruction
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Actually, the Hankel matrix will have rank L aslongas p(r,t,) hasform (1). Thus the
low rankness is an intrinsic property associated with the signal model and can be taken into % transfer to image domain
account for reconstructing the image series from undersampled data:
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the low resolution data whose column capture the major variation along the temporal dimension [4]. The regularization term |‘l’l‘p® enforces temporal
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redundancy and spatial sparsity simultaneously. We propose to solve problem (2) in a nonlinear filtering framework [10] as summarized in Algorithm 1. Specifically,
image sparsity and temporal redundancy are imposed through soft-thresholding in wavelet-PCA domain (Step 2). To promote linear predictability, we conduct low
rank matrix approximation using singular value decomposition (SVD) on the Hankel matrix formed at each spatial location of the current image function (Step 5).
Function Hankelize(-) restores the Hankel structure of the low rank approximated matrix by averaging along the anti-diagonals and replacing each element by

the mean value of that anti-diagonal. Data consistency was enforced right after each nonlinear filtering (Steps 4 and 6).

EXPERIMENT AND RESULT: We validated the proposed method using a fully sampled multi-contrast brain dataset acquired on 3T scanner (MAGNETOM
Trio, SIEMENS, Germany) using a turbo spin echo sequence with a 12-channel head coil array (matrix size=192x192, FOV=192mmx192mm, slice
thickness=3.0mm, ETL=15, ATE=8:8ms, TR=4000ms, bandwidth=362Hz/pixel). Informed content was obtained from the imaging subject in compliance with the
Institutional Review Board (IRB) policy. Undersampled measurements were retrospectively obtained using variable density undersampling along the phase encoding
dimension. Conventional CS based reconstruction with PCA as the sparsifying transform along the temporal direction was also conducted for comparison.
Reconstruction errors of the T2-weighted images and the estimated T2 maps are presented in Fig.1 and Fig.2. As can be seen, the proposed method outperforms the
standard CS-based method for all frames at a reduction factor of 4. The T2 maps estimated from the CS reconstruction suffered from obvious aliasing artifacts, while
the proposed technique successfully suppressed the artifacts to an acceptable level with all reduction factors.

DISSCUSION AND CONCLUSION: This work proposed a novel method to reconstruct the T2-weighted images from undersampled k-space data by
incorporating linear predictability to constrain the exponential behavior of the temporal signal which may be biased during standard sparse reconstruction. The
proposed technique can also be applied to other parameter mapping applications where signal of multiple-exponential-decay is involved.
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Fig. 2. Estimated T2 maps of the
brain dataset using the
reconstruction from the CS and
proposed CS-LP method with
reduction factor R of 3, 4 and 5.
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Fig. 1. The relative reconstruction error
using the CS method and the proposed
CS-1.P method for all frames at R=4.
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