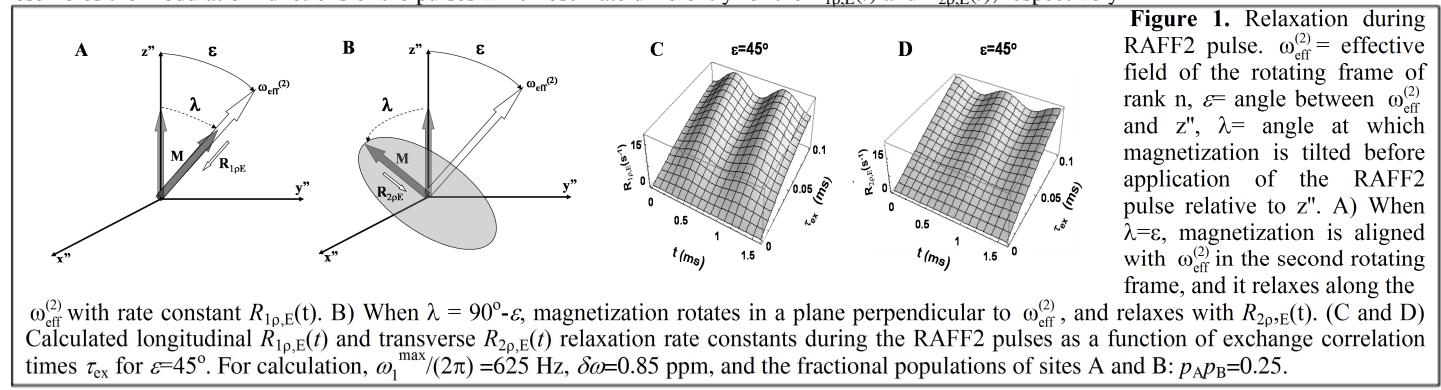


## Exchange-Induced Relaxations in the Presence of Fictitious Fields

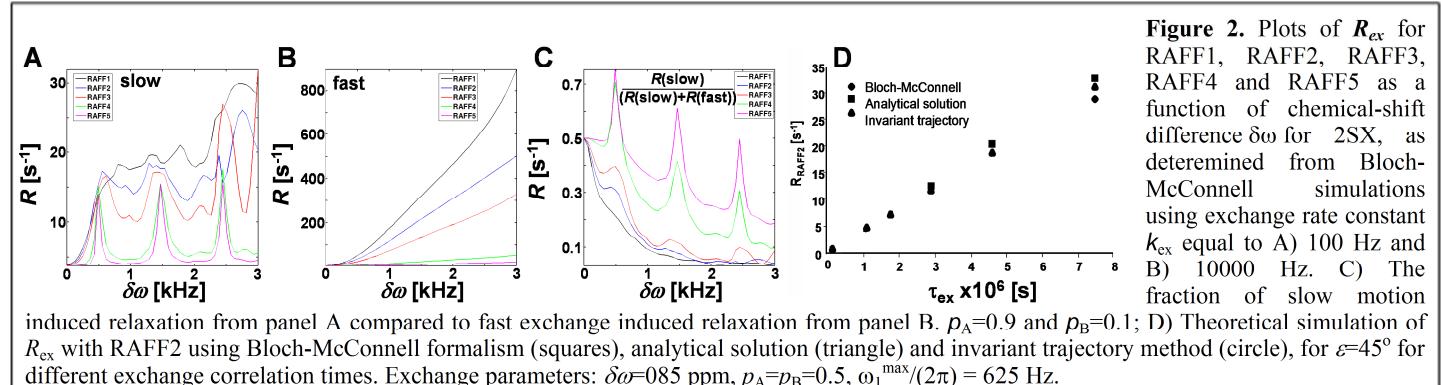
Timo Liimatainen<sup>1</sup>, Dennis Sorce<sup>2</sup>, Silvia Mangia<sup>2</sup>, Michael Garwood<sup>2</sup>, and Shalom Michaeli<sup>2</sup>

<sup>1</sup>A.I.Virtanen Institute, University of Eastern Finland, Kuopio, FI, Finland, <sup>2</sup>Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

### Introduction


Bendall et al [1] and Garwood et al [2] have described RF pulses with  $\sin/\cos$  amplitude ( $\omega_1(t)$ ) and frequency ( $\Delta\omega(t)$ ) modulation functions, respectively, which produce a *fictitious* RF field component in a second rotating frame due to a fast sweep of the effective RF field,  $\omega_{\text{eff}}(t) = (\omega_1(t)^2 + \Delta\omega(t)^2)^{1/2}$ . The spin is unable to follow the RF field during its rotation and undergoes precession around the RF magnetic field component out of the plane of rotation of the circularly polarized RF field. Recently we introduced a rotating frame method producing fictitious RF field components operating in even higher rotating frames, entitled RAFFn (Relaxation Along a Fictitious Field, whereby n indicates the rank of the rotating frame). With RAFFn, the final effective field  $\omega_{\text{eff}}^{(n)}$  is a vector sum of  $\Delta\omega^{(n)}(t)$  and  $\omega_1^{(n)}(t)$ , having fictitious magnetic field components. The amplitude of  $\omega_{\text{eff}}^{(n)}$  remains stationary in the rotating frame of rank n [3,4]. Here, an analytical solution for exchange during RAFFn was derived and compared with Bloch-McConnell formalism.

### Methods:


The analytical solution for two site exchange (2SX) during the RAFFn pulses was derived using density matrix formalism which is valid in the fast exchange regime (FXR). The relaxations were treated upon transformation to the  $n^{\text{th}}$  rotating frame. The derived equations as well as the method of the derivation can be used to obtain equations for the description of exchange-induced relaxations in higher rotating frames ( $n > 2$ ). A train of RAFFn pulses assembled into  $PP^{-1}P_{\pi}P_{\pi}^{-1}$  packets was simulated using Bloch-McConnell formalism, as described in detail in [5].

### Results and Discussion

The results of theoretical calculations of the relaxation rate constants during RAFF2 pulses are shown in Fig. 1. The description presented is limited to one particular case when the angle  $\lambda$  defining the initial orientation of  $\mathbf{M}$  relative to the  $z'$  axis of the first rotating frame (FRF) is set to zero (Fig 1, A). When  $\lambda = \varepsilon$ , the relaxation is governed solely by  $R_{1p,E}$  ( $=1/T_{1p,E}$ ) mechanisms. When  $\lambda = 90^\circ - \varepsilon$ ,  $\mathbf{M}$  undergoes precession in the plane perpendicular to  $\omega_{\text{eff}}^{(2)}$ , and thus the relaxation is solely  $R_{2p,E}$  ( $=1/T_{2p,E}$ ) (Fig 1, B). Figure 1 (C and D) shows theoretical calculations of  $R_{1p,E}(t)$  and  $R_{2p,E}(t)$  during the application of RAFF2 pulses for  $\varepsilon=45^\circ$ . It can be seen that the time dependence of the exchange-induced relaxation rate constants resembles the modulation functions of the pulses which oscillate differently for the  $R_{1p,E}(t)$  and  $R_{2p,E}(t)$ , respectively.



$\omega_{\text{eff}}^{(2)}$  with rate constant  $R_{1p,E}(t)$ . B) When  $\lambda = 90^\circ - \varepsilon$ , magnetization rotates in a plane perpendicular to  $\omega_{\text{eff}}^{(2)}$ , and relaxes with  $R_{2p,E}(t)$ . (C and D) Calculated longitudinal  $R_{1p,E}(t)$  and transverse  $R_{2p,E}(t)$  relaxation rate constants during the RAFF2 pulses as a function of exchange correlation times  $\tau_{\text{ex}}$  for  $\varepsilon=45^\circ$ . For calculation,  $\omega_1^{\text{max}}/(2\pi) = 625$  Hz,  $\delta\omega = 0.85$  ppm, and the fractional populations of sites A and B:  $p_A, p_B = 0.25$ .



induced relaxation from panel A compared to fast exchange induced relaxation from panel B.  $p_A = 0.9$  and  $p_B = 0.1$ ; D) Theoretical simulation of  $R_{\text{ex}}$  with RAFF2 using Bloch-McConnell formalism (squares), analytical solution (triangle) and invariant trajectory method (circle), for  $\varepsilon=45^\circ$  for different exchange correlation times. Exchange parameters:  $\delta\omega = 0.85$  ppm,  $p_A = p_B = 0.5$ ,  $\omega_1^{\text{max}}/(2\pi) = 625$  Hz.

In Fig. 2, simulation results for 2SX during the RAFFn pulse trains are shown. With the increase of the rank n of the rotating frame, the sensitivity to slow exchange increases and is maximal for RAFF4 and RAFF5. Fourier transformation of RAFFn pulses reveals specific frequency bands of high intensity (sidebands) which lead to an increase of the rate constants at specific chemical shifts (Figs. 2, A and C). This may allow “relaxation tuning” of RAFFn pulses to specific frequencies of interest. The analytical solution for exchange-induced relaxations during RAFFn is in good agreement with the description of exchange given by Bloch-McConnell and invariant trajectory formalisms [6].

**Conclusion:** In the presence of the fictitious fields, with the increase of rank n of the rotating frame, the sensitivity to slow exchange increases.

**Acknowledgments:** Academy of Finland, Sigrid Juselius Foundation, NIH Grants BTRC P41 EB015894, P30 NS057091, R01 NS061866.

**References:** [1] Bendall, M. and D. Pegg, J Magn Reson 1986 [2] M. Garwood and L. DelaBarre, J Magn Reson. 2001 [3] T. Liimatainen et al. MRM 2010 [4] T. Liimatainen et al. ISMRM 2012 [5] Liimatainen et al., J Magn Reson. 2011.