Dynamic estimation of cerebral metabolic rate of oxygen from BOLD and flow signals
Farshad Moradi', Aaron Simon?, and Richard B Buxton'?
'Radiology, UCSD, San Diego, California, United States, *Center for Functional MRI, University of California, San Diego, California, United States

Purpose: To develop a detailed physiologic model for dynamic Blood Oxygen Level Dependent (BOLD) modulations.

Background: The relation between BOLD signal and underlying neural activity is complicated by nonlinear changes in vascular volumes and
saturations linked to blood flow dynamics. The effect of physiological variables on steady-state BOLD response is well understood' and a calibrated
BOLD methodology could be relatively robust to such variables”. A comparable detailed theoretical framework for BOLD dynamics is lacking.

Methods: Variations of oxygen saturation and deoxyhemoglobin content from arterioles to veins were approximated by dividing the vascular bed
into numerous discrete sequential compartments. A viscoelastic balloon model® was used for the relation between compartment volumes and inflow.
Changes in blood oxygen content were estimated from permeability area product and oxygen partial pressure gradient between tissue and each
compartment. We applied the model to experimentally measured flow and BOLD signals estimating relative cerebral metabolism rate of oxygen
(CMROy) as a function of time. An approximate solution that minimizes the difference between observed and predicted BOLD signal was found by
linearizing the effect of changing oxygen metabolism at each time point by a fixed amount on predicted BOLD signal shortly afterwards.

Figure 1. Simulation of dynamic BOLD response to visual stimulus
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The effect of various physiologic parameters on CMRO, estimations is
depicted in Figure 2. When total cerebral blood volume change is dominated
by arterioles, the rate of venous volume change has only minimal effect on
CMRO, estimates. If venules dominate total CBV change, however,
0 20 40 60 0 20 40 60 dynamics of estimated metabolic response would depend on venous

time (s) tme () viscoelastic time constant.

Pti02 (mmHg)T'I
N N
2 o

Discussion: We propose a theoretical framework for estimation of
dynamic modulations of CMRO; by expanding a previous steady state ——7,=30S cBYV dominant —7,=35 BV dominant
model' and combining it with the balloon model. A multi-compartment A —_1,=80s : B __t,=30s Y
formalism is flexible, allowing integration of future experimental results 1.2 1.2

with the model to improve its accuracy. Examples demonstrate how the
model can be applied to analyze experimental data and make empirically
verifiable predictions. Taking into account transient changes in blood
volume distribution increases temporal accuracy of CMRO, estimates
compared to applying steady-state analysis to dynamic data.
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for Functional MRI. Figure 2. The effect of arteriolar and venous viscoelastic time
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