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Introduction: Increasing evidence suggests that human brain can be modeled as a complex network [1]. Advances in graph theory have provided a powerful tool to 
characterize (functional and structural) brain networks and connectivity. In this context, functional connectivity has been estimated mainly through calculating cross-
correlation coefficients of fMRI signal between pairs of parcellated brain regions [2]. However, this approach measures the general relationship between two regions 
without taking account of the influence of the others. While this issue could be addressed, in principle, by using partial correlations, it is not suitable for cases with large 
number of regions; this is exacerbated when the number of possible connections is larger than the available number of time points, which is usually the case for 
functional connectivity studies. Since estimating partial correlations is equivalent to estimating the inverse covariance matrix, regularization strategies that provide 
sparse solutions have been proposed for estimating the inverse covariance matrix, and thus connections [3]. Furthermore, to obtain networks at group level, networks 
calculated at individual level are usually averaged across the group. This is inevitably affected by inter-subject variability, which is made worse by the relatively low 
SNR of fMRI data. To address these issues, we propose to use a joint sparsity constraint method with joint graphical models (JGM) [4] to directly estimate a group-
level inverse covariance matrix, therefore accounting for inter-subject variability. To circumvent the issue of choosing regularization parameters, a recently proposed 
stability selection method is employed [5]. The proposed method, combining JGM with stability selection (labeled JGMSS) is first assessed using simulated data and 
then applied to in vivo fMRI data. For comparison, a recent regularization method using elastic net (EN) penalty [3] was also applied to both simulated and in vivo data. 
Methods: The JGM can be described as follows [4]. Assuming that K datasets, )(),1( ,..., KXX , are obtained, )(k
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encourages a similar pattern of sparsity across the K precision matrices. To estimate the group-level precision matrix, an alternating direction method of multipliers was 
employed [4, 6]. Given that it is difficult to determine optimal regularization parameters, 1λ  and 2λ , a stability selection method is employed to estimate stable 
connections[5]. With stability selection, the data are subsampled many times and all variables that occur in a large fraction of the resulting selection sets are selected. 
For regularization parameters ),( 21 λλ , the estimated connectivity matrix is denoted as { }0),(;),(1:),(21 , ≠Θ≤≤= nmMnmnmS λλ . For a cut-off )1,0(∈thrπ and a set of regularization 
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To demonstrate the robustness of the proposed method, simulations were conducted according to ref [7]. Simulation: Networks of small-world properties were 
simulated with 5 different percentages of connections (r= 16, 24, 28 and 32). The number of regions and observations are p=50 and n=56, respectively. For each r, the 
procedure was repeated 10 times to generate 10 datasets. To perform stability selection, n/2 observations were randomly subsampled without overlapping for each 
dataset, which was repeated 100 times to estimate the probabilities 21 ,

,
ˆ λλπ nm  over the regularization region ),( 21 λλΛ . It has been shown that the expected number of falsely 

selected connections V is bounded by pqVE thr /)12/(1)( 2−= π [5], where p is the total number of variables in the model and q is the average number of selected connections 
for a given range of ),( 21 λλ . The per-comparison error rate (PCER= pVE /)( ) is employed to control falsely selected connections. In vivo data: Arterial spin labeling 
(ASL) fMRI data were acquired in ten subjects on a 3T Siemens Trio scanner using a whole-brain 3D-GRASE pCASL sequence [8]:TR/TE =3750/56ms, resolution 
=4x4x6mm3, 20 slices, matrix size =64x51, post-labeling delay=600ms, with labeling duration = 1284ms. Background suppression was achieved using TIs= 1913ms 
and 523ms [8]. In addition, anatomical and calibration images were acquired for registration and CBF 
quantification. Image analysis: ASL perfusion images were pre-processed as follows [8]: realignment, 
coregistration, normalization (MNI template, 61×73×61), detrend and 
band-pass filtering; to remove intravascular artifacts, independent 
component analysis was performed using MELODIC in FSL. The pre-
processed ASL perfusion images were employed as inputs to calculate 
node-wise mean time series at individual level where AAL template (84 
ROIs [9]) was used to define the nodes. With these individual-level time 
series as inputs, the proposed method was then employed for estimating 
group-level functional networks. Since fMRI signal is not independent, 
the time series were divided into 14 consecutive blocks (4 time points 
each block). For comparisons, regularization using EN penalty [3] was 
also applied. The PCER (=0.05 for PC=16%, 0.1 otherwise due to 
inaccessible 1>thrπ  ) was employed to control falsely selected 
connections. To investigate the legitimacy of choosing thrπ  by setting 
PCER, an optimal estimate of network (with a maximum accuracy rate) 
was calculated based on ground truth for each simulation. For in vivo 
data, PCER=0.05 was used to determine thrπ  for controlling falsely 
selected connections. 
Results:  Fig. 1 shows that JGMSS can estimate networks with consistently higher accuracy and sensitivity 
than EN within the varying range of r. Moreover, JGMSS achieves near optimal accuracy and sensitivity (as 
determined based on ground truth) by controlling falsely selected connections; EN, however, deviates far 
from its optimal estimates (Fig. 1). Fig. 2 illustrates examples of network estimation using JGMSS (left) and 
EN (middle), with a true (simulated ground truth) network (right). It clearly demonstrates that JGMSS can 
more reliably estimate true connections than EN does. While JGMSS generally introduces slightly higher 
false positive rate, the consistently higher accuracy and sensitivity confirms the validity of JGMSS for 
estimating networks at group-level. For in vivo data, networks were estimated for JGMSS (Fig. 3, top middle) 
and EN (Fig. 3, bottom middle) by setting PCER=0.05. Networks estimated with 2 other thrπ (0.7 and 0.9) are also shown (Fig. 
3). While the estimated networks using EN are largely dependent on thrπ , those estimated using JGMSS varies little with 

thrπ (Fig. 3). Calculation of small-world index ( 95.0-7.0=thrπ , 0.05 each step) further confirms much less dependence of 
JGMSS on the thrπ than EN (Fig. 4). 
Discussion: In this study, we proposed a joint sparsity constraint method using JGMSS to directly estimate networks at group-
level. Simulations demonstrate that JGMSS can achieve consistently higher accuracy and sensitivity than EN. Notably, 
simulated results show fairly low accuracy and sensitivity with EN compared to another study [3]. This is likely due to much 
fewer time points (56 vs 200) and number of subjects (10 vs 50) in our study. This further demonstrates the power of JGMSS 
in reliable network estimation, even in such cases. Since choosing appropriate threshold is still an open question, PCER was 
employed to choose a threshold for stability selection. Near optimal estimates of networks using JGMSS have been confirmed 
with simulations. Furthermore, our results show much less network variability (Fig.3 and 4) across the selected range of threshold (0.7-0.95) than EN does, suggesting 
that JGMSS is relatively insensitive to threshold. Furthermore, based on simulated results (Fig. 2), JGMSS was found to achieve higher sensitivity, although it tends to 
estimate more false connections than EN. Therefore, it is more likely that choosing thrπ by controlling PCER is a near optimal way for JGMSS than for EN for in vivo 
data. Overall, JGMSS can robustly and reliably estimate functional connectivity at group-level. Finally, it should be noted that, while JGMSS was illustrated here with 
ASL fMRI data, the proposed method can be directly applied to BOLD-based studies.   
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