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Introduction
Previous brain network studies have widely reported both structural and functional brain networks show small-world characteristics under certain conditions [1, 2].
However, the strengths of small-worldness may vary due to several factors, such as cortical parcellation number (scale) representing the nodes in a graph, connectivity
measure representing the edges in a graph, and selection of sparsity for constructing a binarized adjacency matrix [3]. Although network analysis with graph theory has
gradually become an important tool for investigating the brain’s wiring and activities, the relationship between the small-worldness and these factors is still unclear.
Therefore, in this study, our first aim was to investigate the dependence of small-worldness on the sparsity in either structural or functional networks at multiple scales.
The second aim was to investigate the correlation of small-worldness between structural and functional networks. With this systematic analysis, we could facilitate the
use of network analysis with adequate parameters and gain more insights into the coherence between structural and functional networks.
Materials and Methods
MR experiments were performed on a 3T MRI system with a 32-channel head coil (Trio, Siemens AG, Germany). A total of ten healthy volunteers (5 males and 5
females, 18-22 yrs, right-handed) were studied under Institutional IRB approval. For structural connectivity, g-ball imaging (QBI) data was acquired on a g-space shell
with a total encoding number of 162 and a maximum b-value of 3000 s/mm’. The sequence parameters of QBI were 2x2x2 mm? spatial resolution, 60 slices, TR of 11.7
sec, and the total scan time of approximately 30 mins. The reconstruction of QBI was based on the method proposed by Tuch [4]. To calculate the structural connectivity,
a streamline-based fiber tracking algorithm (DSI Studio, http://dsi-studio.labsolver.org/) was employed to obtain the fiber tracks across any of pairs among cortical
parcellations. For functional connectivity, resting-state fMRI data was acquired with the following EPI sequence parameters; TR of 2 sec, 3x3x3 mm?® spatial resolution
and 180 repetitions. The pre-processing of resting-state fMRI data includes slice-timing correction, motion correction, grand mean drift scaling and low-pass filtering
(0.02-0.08 Hz) by a combinational use of SPMS8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and DPARSF (http://www.restfmri.net/forum/DPARSF). The
functional connectivity was derived by correlating the resting-state fMRI time series between any of pairs in cortical parcellations. To analyze the brain network at
multiple scales, we employed a weighted k-means algorithm to parcellate the cortical regions in Automatic Anatomical Labeling (AAL) atlas into five levels of scale.
The scales used for following network analysis were 90, 180, 360, 720 and 1028. The sparsities used to binarize these adjacency matrices were ranged from 2% to 20%.
Three network measures were derived from the binarized matrices, including mean clustering coefficient, path length and small-worldness [5].
Results
With different parcellation scales (figure 1a), the adjacency matrices of functional and structural networks of a single subject are shown in figures 1b and lc. In
functional network, the overall patterns of adjacency matrices are consistent across different scales. However, in structural network, the matrices with higher scales
show more low-connectivity points due to insufficient fiber tracks. Figure 2 shows different network measures at multiple scales against the change of sparsities. The
tendencies of the clustering coefficient and mean path length against sparsity in both functional (a and b) and structural (d and e) networks at multiple scales are
generally similar, whereas the tendency of small-worldness (¢ and f) between functional and structural networks is slightly deviated. The correlation results of
small-worldness between functional and structural networks at the lowest scale (90 parcels) are shown in figure 3a, showing that the correlation values vary across
different sparsities. Figure 3b shows a scatter plot of small-worldness in functional and structural networks among a total of ten subjects, showing that the characteristics
of functional and structural networks is highly correlated at some sparsities.
Discussion
With sparsities higher than approximately 0.1, our preliminary results have
shown that the tendencies of network measures are consistent at all scales.
However, inconsistency happens with the sparsities lower than 0.1, which
may cause bias in comparison between functional and structural networks.
This inconsistency may need to be further addressed by replacing connectivity
measures and methods to generate sparse matrix. Our preliminary results (fig.
3) in correlating the small-worldness of functional and structural networks at
lowest scale show interesting patterns. At some sparsity pairs, high
correlations between functional and structural networks can be found,
suggesting that the coherence between them may exist under certain
conditions. Our current works will focus to map the correlation of
small‘—worl('iness between functional and structural networks a.t'hlgher scales,. Figure 1. The adjacency matrices of functional and structural networks of a single
and investigate how the patterns and the correlated sparsities change with  subject. (a) different parcellation scales from 90 to 1028, (b) functional network
different scales. matrices and (c) structural network matrices.
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Figure 2. Different network measures at multiple scales against the change 0£ Figure 3. The correlation of small-worldness between functional and
sparsities from 0.02 to 0.2. The upper row shows the plots of functional networ structural networks at the lowest scale of 90 parcels. Subfigure (a) shows
measures “and the bottom row shows those of structural network measures, the correlation patterns with the change of sparisities and the black arrow
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