ROBUST KALMAN FILTER BASED INCREMENTAL ACTIVATION DETECTION FOR REAL-TIME FMRI
Liang Li', Li Tong', Bin Yan', Ying Zeng', Linyuan Wang', and Jianxin Li'
!China National Digital Switching System Engineering and Technological Research Center, zhengzhou, Henan, China

Introduction

Real-time functional magnetic resonance imaging (rt-fMRI) is a technique that enables us to observe human brain activations in real time'.
However, the real-time activation analysis is affected by many unexpected sparse noises, such as acute swallowings, head movings and machine
fluctuation. Hence, improving the robustness of fMRI data for the real-time activation analysis becomes a great challenge. We propose a new
activation detection method for rt-fMRI data based on robust kalman filter. This method adds a variation to the update step in the extended kalman
filter to fit the unexpected noise in the general linear model, and use the solved variation to modify the measurment step of the kalman filter. In
clinical application, the method can be used in the functional localization run to obtain the brain regions associate with the tasks in real time,

especially for the subjects who could not keep peace during the experiments.
Theory

The extended kalman filter (EKF) based general linear model (GLM) estimation method was first proposed by Roche?. The method can calculate
activations in real time, but sparse noise may affect its estimation performance. To address this problem, an additional sparse measurement noise
term is introduced in our method, where the sparse noise term z, is added into the measurement update step and robust kalman filter is used to
transform the solving of the noise term into a L1-norm minimization based convex optimization problem. The sparse noise term can effectively
improve the model’s robustness to sparse noise.

The modified GLM with an additional sparse noise term is y, = x, 8+ &, + z,. b =[[;a] is the state vector to be estimated, a is the estimated

first-order autocorrelation coefficient of Gaussian noise £ , and /3 is the correlation coefficient of GLM. And then the likelihood function is
linearize as p(b,z,) = q, —u;b—z, , Where g, =y, _ai—lxiT—I i1 Uy = [xl. _ai—lxir—l’ Yia _xiT—l (e Zi—1:| » ¥, is the measurement value at time point
i. The L1-constraint optimization problem is as follows.
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min vV, +(b—bH) = (b—b,.fl ) +A|z,|, subject to g, =ub+v,+z

Furthermore, the fast transform method proposed by Jacob Mattingley and Stephen Boyd” is adopted to transform the original problem into an
equivalent convex quadratic programming problem, so that to solve the problem more efficiently.
. T
min (¢, -z) Q;(e,—z)+ 4]z,
In practice, z;and e; are not vectors but real numbers, hence this non-constraint optimization problem has an analytical solution, which means

that no searching loop is needed to obtain the optimization solution, thus guarantee the solving speed of our method suitable for rt-fMRI application.
Material and method

We use healthy subject to perform a random block design left and right finger tipping task. The run consisted of 10 blocks, each block including
one activation epoch(20s) and one control epoch (10s) , containing 150 time points.. MRI was performed on a GE Discovery MR750 3.0T scanner.
fMRI was acquired using an T2* weighted echo-planar imaging sequence sensitive to the BOLD contrast. The data were preprocessed by the AFNI
real-time 3D head motion correction. Then the data was arranged into the python interface to perform the algorithm.
Results and Discussion ofgh woxe
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Experimental results are shown in Fig.1. The blue curve in the 1 T caeclr
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first section of the figure is the original time series, from which
we can see that there is an outlier at about the 45™ TR. For the
EKF based estimation method, this will result decline in the
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estimated T-test value, as is given by the red curve in the second !

section of the figure. Since our method can detect sparse noise
and use it to modify the EFK model, the outlier does not affect
the estimated T-test value of our method, as is presented by the
blue curve in the second section of the figure. The third section
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of the figure shows the occurrence and value of the detected 0 Ey 0 60 @ 100 120 140 60

sparse noise. ; outerf e o
A robust kalman filter based activation detection algorithm is
developed in our paper. By introducing sparse noise term and
utilizing convex optimization technique, the robustness of our
method to sparse noise has been improved, and the estimation
performance will not degrade rapidly when disturbances are o 20 0 % % 00 20 40 60
involved. Applied to time series voxels, our method can obtain
more stable T-test values in both activate and inactivate voxels.

Our proposed method can improve the stability of functional Fig.1 In the first section, the blue curve is the origin time series and the red curve is the
location. and detect the occurrences and values of outliers in real reference vector, the middle section shows the comparison of the T-test value between
s

time. hence mayv provide an additional means for data qualit the robust extended kalman filter and the extended kalman filter performing in an active
’ X yPp X K D q y voxel. In the third section, the blue curve is the value of detected outliers.
control, especially in real time applications.
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