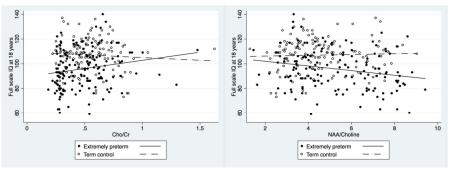
Long-term alterations of brain NAA, Cho and Cr in extremely preterm adolescents are associated with cognition

Alan Bainbridge¹, Cheong LY Jeannie^{2,3}, Peter J Anderson^{3,4}, Deanne K Thompson³, Alan Connelly⁵, Peter J Lally⁶, Nicola J Robertson⁶, and Lex W Doyle^{2,3}


¹Medical Physics, UCLH NHS Foundation trust, London, United Kingdom, ²Royal Women's Hospital, Melbourne, Australia, ³Murdoch Children's Research Institute, Melbourne, Australia, ⁴University of Melbourne, Melbourne, Australia, ⁵Florey Institute of Neurosciences and Mental Health, Melbourne, Australia, ⁶Institute for Women's Health, University College London, London, United Kingdom

Introduction: Preterm birth is associated with increased risk of white matter (WM) injury resulting in disrupted WM maturation and neurodevelopmental deficits. Extremely preterm infants (EP; born <28weeks' gestation) are at increased risk of cerebral palsy, and other motor and cognitive impairments¹. Simultaneously raised choline (Cho)/creatine (Cr) and reduced N-acetylaspartate (Naa)/Cho in posterior white matter, measured using ¹H Magnetic Resonance Spectroscopy (MRS), predict abnormal 1-year motor outcome in infants born very preterm (<32 weeks' gestation)². It is unknown whether the relationship between ¹H MRS metabolite peak-area ratios with neurodevelopment persists into adolescence. We aimed to compare the metabolite ratios NAA/Cr, Cho/Cr and NAA/Cho between EP and term controls at age 18 years and to explore the association between these metabolite ratios and full scale IQ at 18 years.

Methods: 283 subjects, comprising a regional cohort of 150 EP adolescentsand 133 term controls born in 1991-92 in the state of Victoria, Australia, underwent MRS at 18 years of age. Studies were performed in 2 centres, each equipped with a Siemens 3T Magnetom Trio scanner. ¹H MRS was obtained from a 20x15x10 mm voxel centred on the left posterior cingulate (PC)WM using a 12 channel receive-only head coil and a PRESS acquisition (TR = 3000ms, TE = 135ms, 128 averages). Spectra were fitted using LCModel³ and the metabolite ratios NAA/Cr, Cho/Cr and NAA/Cho were calculated. Statistics were performed using STATA 13.0 (StatCorp, Texas, USA). Ratios were compared between groups using t-tests and correlated with IQ (two-subtest version of the Wechsler Abbreviated Scale of Intelligence⁴) at 18 years using linear regression.

Results: Mean (SD) gestational age at birth, age at scan, IQ and metabolite ratios are shown in the Table. NAA/Cr and Cho/Cr were lower in EP subjects compared with controls, whereas NAA/Cho was higher. No correlation was seen between metabolite ratios and IQ in controls (Cho/Cr: $R^2 = 0.004$, coefficient (coeff) = -4.4, p = 0.49; Naa/Cr: $R^2 = 0.012$, coeff= 9.1, p = 0.25; Naa/Cho: $R^2 = 0.001$, coeff = 0.3, p = 0.40). Correlation coefficients were significantly different in EP subjects compared with controls for Cho/Cr and Naa/Cho, but not Naa/Cr; see figure (coefficients EP group, p-values for difference compared with controls: Cho/Cr: $R^2 = 0.032$, coeff = 13.2, p = 0.04; Naa/Cr: $R^2 = 0.001$, coeff = 3.1, p = 0.56; Naa/Cho: $R^2 = 0.050$, coeff = -1.9, p = 0.03)

	Gestation age at	Age at scan	IQ	Naa/Cr	Naa/Cho	Cho/Cr
	birth (weeks)	(years)				
EP	25.8 (1.0)	18.4 (0.8)	96 (16)	2.15 (0.18)	5.22 (1.90)	0.48 (0.22)
(n=150)						
Controls	39.3 (1.3)	18.0 (0.9)	107 (13)	2.20 (0.16)	4.95 (1.61)	0.54 (0.20)
(n=133)						
P-value	< 0.001	0.35	< 0.001	0.03	0.003	0.02

Discussion: This is the first study to lona term brain metabolite report differences in PC WM in EP with Naa/Cr. Naa/Cho and Cho/Cr significantly different compared to controls. The PC cortex is a highly connected region and has an important role in cognition⁵. In EP subjects at term Cho/Cr is raised in those with poor motor outcomes¹. However the current study shows that at age 18, Cho/Cr is decreased in EP subjects, suggesting an

increased rate of aging related to a reduced turnover of cells⁶. The correlations between IQ and MRS in EP subjects but not controls may help to further elucidate cognitive impairment associated with EP birth.

References

1:Himpens E *et al* Dev Med Child Neurol. 2008 May;50(5):334-340. 2: Kendall *et al*, Radiology 2013, in press. 3: Provencher SW, NMR Biomed 2001, 14(4), 260-4. 4: Wechsler D (1999) Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: Harcourt Assessment Inc. 5: Leech R and Sharp DJ, Brain 2013, Jul 18 Epub ahead of print PMID 23869106. 6: Bittner DM *et al*. J Alzheimers Dis. 2013 Jan 1;36(1):155-63