

In-vivo ^{37}Cl Magnetic Resonance Imaging at 7 Tesla

Anna Kollefrath¹, Manuela Rösler¹, Reiner Umathum¹, and Armin M. Nagel¹

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

INTRODUCTION

Chloride (Cl^-) is the most abundant anion in the human body and plays a significant role in cellular processes. Cl^- exhibits two naturally occurring NMR sensitive isotopes with natural abundances of 76% and 24%, for ^{35}Cl and ^{37}Cl , respectively. At 7 Tesla the resonance frequencies are 29.1 MHz (^{35}Cl) and 24.2 MHz (^{37}Cl). Thus, ^{35}Cl has a higher NMR sensitivity than ^{37}Cl and was preferred for MRI [1- 3]. However, ^{35}Cl exhibits fast transverse relaxation times that complicate quantitative measurements. In part this is compensated by the lower quadrupole interaction leading to longer relaxation times of ^{37}Cl . ^{37}Cl exhibits a smaller electrical quadrupole moment than ^{35}Cl [4]. Thus, 1.5 to 1.6-fold longer $T_{2\text{r}}$ relaxation times are expected [5]. The aim of this work was to quantify ^{37}Cl relaxation times and to evaluate the feasibility of in-vivo ^{37}Cl MRI on a 7 Tesla whole-body MRI system.

METHODS

A frequency conversion scheme similar to [6] was used. All measurements were conducted on a 7 Tesla whole-body MRI system (Magnetom 7T, Siemens Healthcare, Erlangen, Germany). A custom made solenoid coil was designed and built (length= 8 cm, diameter= 7 cm, 3 turns of copper tape, width=12 mm).

Phantom measurements: Phantoms containing 0.9 % sodium chloride solution with different agar concentration (0%, 1%, 3%, 4%) were used for relaxation time measurements. Longitudinal (T_1) and transverse relaxation times (T_2^*) were determined with a density adapted 3D radial sequence (DA-3DPR) [7]. For the T_2^* measurements 4 multiecho sequences with 8 echoes each ($\text{TE} = 0.3\text{...} 250\text{ ms}$) were used ($\text{TR} = 300\text{ ms}$, $\text{TA} = 1500\text{ s}$, $\text{T}_{\text{RO}} = 5\text{ ms}$). The 32 echo times TE varied for the different phantoms because a decrease of the relaxation time was expected with increasing agar concentration. For the T_1 measurement an Inversion Recovery sequence was used with 25 different TIs between 1 and 290 ms. To estimate the relaxation times monoexponential fitting (pure sodium chloride solution) and a biexponential model were chosen with a long and a short component of the relaxation time. Additionally a noise term was considered ($S = \sqrt{A^2 \left(0.6e^{-\frac{t}{T_{2s}}} + 0.4e^{-\frac{t}{T_{2l}}} \right)^2 + N^2}$ and $S = \sqrt{A^2 \left(1 - 2 \left(0.2e^{-\frac{t}{T_{1s}}} + 0.8e^{-\frac{t}{T_{1l}}} \right)^2 \right) + N^2}$). In figure 1 the results are shown and compared to a study of ^{35}Cl with the same phantoms [8].

In-vivo measurements: A narcotized rat was imaged using a DA-3DPR sequence. For comparison ^{35}Cl was co-registered with the setup. The imaging parameters were $\text{TR} = 55\text{ ms}$, $\text{TE} = 0.3\text{ ms}$, $\alpha = 90^\circ$ and the image was Hamming filtered. A nominal resolution of $(5\text{ mm})^3$ was achieved within 45:50 min acquisition time for the ^{37}Cl measurement and $(4\text{ mm})^3$ within 18:20 min for ^{35}Cl . On top of the rat's head two reference phantoms with 6 ml NaCl solution, one with 0.9 % and one with 0.3% NaCl were placed.

RESULTS

In all cases the measured relaxation times of ^{37}Cl were longer than the ones of ^{35}Cl (Fig.1). Increasing the agar concentration the time constant decreased. For ^{37}Cl the fitting results give $T_{1l} = 48.7 \pm 0.7\text{ ms}$ and $T_{2l}^* = 46.6 \pm 0.7\text{ ms}$ for pure NaCl solution. The lowest values were determined for an agar concentration of 4% with $T_{2l}^* = 7.2 \pm 0.2\text{ ms}$, $T_{2s}^* = 1.6 \pm 0.1\text{ ms}$ and $T_{1l} = 19.4 \pm 0.6\text{ ms}$ and $T_{1s} = 2.7 \pm 0.4\text{ ms}$.

The in-vivo image of a rat showed that the signal of the rat relative to the reference phantom is higher using ^{37}Cl measurement compared to ^{35}Cl .

DISCUSSION

To the best of our knowledge this study shows the first ^{37}Cl in-vivo data. The measured relaxation times in the phantom study were lower than expected in theory.

Especially an evaluation of T_2 could eliminate this ambiguity. It was shown that ^{37}Cl in-vivo imaging is possible on a clinical 7T MRI system. The longer relaxation times of ^{37}Cl should enable a more reliable quantification of in-vivo concentration at the expense of slightly reduced spatial resolution.

REFERENCES

- [1] A.Nagel et al., Radiology (2013) (in press)
- [2] S.Kirsch et al., NMR Biomed (2010) 23 p.592
- [3] V.Schepkin et al., Magn Reson Mater Phy (2013)
- [4] R.Harris et al, Magn Reson Chem (2002) 40: p. 489
- [5] G.Jaccard et al.; J Chem Phys (1986) 85: p. 6282
- [6] R.Umathum et al., Radiology (2013) 269: p. 569
- [7] A.Nagel et al., Magn Reson Med (2009) 62: p.1565
- [8] A.Gilles et al., ISMRM Abstract (2013) 4038



Fig.1 Fitting results of the relaxation times for phantoms with 0.9 % NaCl solution and different agar concentrations. a) longitudinal relaxation of ^{37}Cl in comparison with ^{35}Cl b) T_2^* of ^{37}Cl and ^{35}Cl

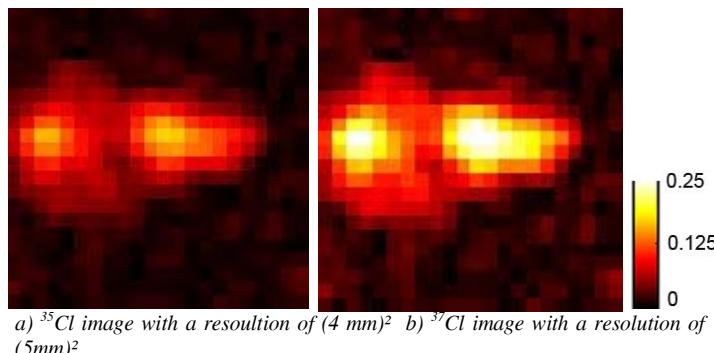


Fig.2 In-vivo image of a rat: $\text{FOV} = (110\text{ mm})^3$, coronary slice with the head and part of the body. Normalization was performed to the reference tube containing 0.9% NaCl. The ^{35}Cl MRI data set was multiplied by a factor of 1.15 to compensate the difference in the ^{35}Cl and ^{37}Cl relaxation behavior of the reference tubes. Nevertheless, the ^{37}Cl images showed a higher normalized signal intensity which can be attributed to the longer T_2^* relaxation times of ^{37}Cl .