# Skeletal muscle pH time course predicts water T2\* during repeated exercise

Albrecht Ingo Schmid<sup>1,2</sup>, Kiril Schewzow<sup>1,2</sup>, Sigrun Goluch<sup>1,2</sup>, Georg Fiedler<sup>1,2</sup>, Fabian Niess<sup>1,2</sup>, Elmar Laistler<sup>1,2</sup>, Michael Wolzt<sup>3</sup>, Ewald Moser<sup>1,2</sup>, and Martin Meyerspeer<sup>1,2</sup>

<sup>1</sup>Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria, <sup>2</sup>MR Centre of Excellence, Medical University of Vienna, Vienna, Austria, <sup>3</sup>Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Vienna, Vienna, Austria

### Introduction

<sup>31</sup>P MRS is known to measure cellular energy metabolism and pH. Skeletal muscle functional magnetic resonance imaging (mfMRI), measuring T<sub>2</sub>\* contrast, has been used frequently in recent years to study effects of exercise, ischemia or both in healthy volunteers or patients.

#### Methods

20 data sets of young healthy subjects of combined <sup>31</sup>P MRS and mfMRI before, during, and after 5 min. plantar flexions at approximately 30 % maximum voluntary contraction force were acquired on a 7 T MR scanner (Siemens, Germany) using a custom-built <sup>31</sup>P/<sup>1</sup>H calf coil array [1].

 $^{31}$ P spectra were acquired within gastrocnemius muscle using accurate semi-LASER [2] localisation (voxel size ~ 36 ml,  $T_E$  = 24 ms). Axial EPI were acquired (FOV = 16 cm,  $T_E$  = 20 ms).  $T_R$  was 6 s, during which volunteers did repeated plantar flexions for 5 min.

The  $^1$ H EPI signal (S<sub>EPI</sub>) in ROI (gastrocnemius medialis) was integrated and normalised. pH was determined from P<sub>i</sub> and PCr resonances, quantified using jMRUI/AMARES. A linear model analysis was used on the EPI signal and pH during exercise:  $S_{EPI} = a * pH + b$ .

## Results

During exercise, pH increased from resting values to 7.11±0.02 and dropped to end-exercise values of

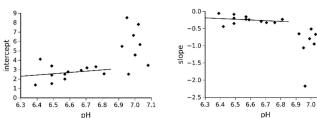
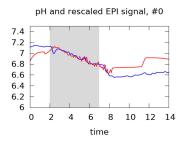




Figure 2 Slope and intercept as function of end-exercise pH. When significant pH changes occur, both slope and intercept are approximately constant. When pH does not show big alterations, any combination will give similar results.

6.75±0.23. EPI signals on the other hand, first dropped to 0.94±0.06 and then increased to 1.09±0.10. pH was found to predict EPI signals very well during exercise and at the beginning of recovery R<sup>2</sup>=0.72±0.16.

As can be seen from Figure 2, parameters *a* and *b* are stable for all subjects, or there was no significant pH change.



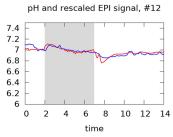



Figure 1 pH time course and rescaled EPI signal in a volunteer with moderate (top) and little (bottom) acidification. Note the excellent agreement during exercise even though the data was recorded in repeated exercises (min 2 – 7) with an ~30 min interval.

## Conclusion

During exercise,  $T_2^*$  is correlated to intracellular pH, confirming previous findings [3]. The underlying process is most probably proton-dependent osmotic water shift [3]. Contrary to what was reported, the present results obtained with high spatial and temporal resolution indicate simultaneous changes of  $T_2^*$  and pH.  $T_2^*$  changes before and after exercise cannot be explained by pH alone, volume changes [4], other osmotic effects or the BOLD effect may contribute significantly.

# References:

- [1] Goluch S, et al Proceedings of the ISMRM 2013 #2782
- [2] Meyerspeer M, et al MRM 2012 68:1713-1723
- [3] Cheng HA, et al J Appl Physiol 1995 79(4):1370-8
- [4] Damon DM, et al MRM 2002 47:14 -23

Acknowledgements: This work was financially supported by the Austrian BMWFJ FFG Project Nr. 832107, "Research Studio for High Field MR Components".