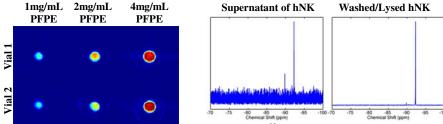
In-vivo tracking of ¹⁹F-labeled natural killer cells with MRI in lymphoid tumor model

Kai D. Ludwig¹, Jeremy W. Gordon¹, Myriam N. Bouchlaka², Christian M. Capitini², Bryan P. Bednarz^{1,3}, and Sean B. Fain^{1,3}

¹Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ²Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ³Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States


Target Audience: Researchers and clinicians interested in immunotherapeutic cell-tracking with ¹⁹F MRI.

Purpose: Tumor-specific immunotherapy is emerging as a novel treatment paradigm for patients with metastatic tumors incurable with conventional therapies. Natural killer (NK) cells are important innate immune effector cells shown to have anti-tumor effects against hematological and non-hematological cancers [1-3]. Often, lack of knowledge on trafficking patterns and NK cell biology limits the efficacy of adoptively transferred NK cell's anti-tumor response and clinically-approved reagents are not yet available. Labeling of various immune cells in-vivo with fluorinated compounds has allowed for detection and cell-tracking via ¹⁹F MRI [4-5], but to date NK cells have not been studied with this approach. The goals of this study are to determine the trafficking pattern of ¹⁹F-labeled NK cells in-vivo and how they mediate their anti-tumor effects in a humanized mouse model of pediatric cancers.

Methods: *Animals:* Two healthy mice and one lymphoma tumor-bearing mouse were used for this study. Mice were anesthetized with either 1.5% isoflurane (Iso) or ketamine/xylazine (Ket/Xyla) (2mg/10g Ket, 0.2mg/10g Xyla), monitored with a respiration pad and maintained at 36°C using a warm-air blower. *Cells:* Human NK (hNK) and mouse NK cells isolated from healthy donor peripheral blood mononuclear cells were cultured ex-vivo for 2 weeks. Mouse NK cells were initially used due to ease of availability. NK cells were incubated for 24 hours in a commercially available perfluoropolyether (PFPE) tracer agent (Celsense Inc., Pittsburgh PA). hNK cells were subsequently washed and injected intravenously into immunodeficient mice. *MR:* NMR was performed on a 9.4T Varian UI-400 (Agilent Technologies, Santa Clara, CA) spectrometer to verify successful uptake of the PFPE agent into NK cells. Imaging was performed on a 4.7T Varian small animal MRI system using a volume quadrature coil tunable to ¹⁹F (187.9MHz). Coronal ¹⁹F images were acquired using a spin-echo sequence (1.1x1.1mm² in-plane resolution, 2mm slice thickness, 16 echoes, 40 averages, ~42 minutes total scan time). A ¹⁹F reference vial (2.3·10^{16 19}F spins/mm³) was placed contralateral to the tumor for in-vivo quantification.T₁-weighted GRE ¹H images were also acquired to visualize anatomy.

Results and Discussion: A dose-dependent response of ¹⁹F signal was shown in mouse NK cells in duplicate (Fig. 1). NMR spectra of the separated cells and its supernatant confirmed that ¹⁹F signal originated from within the hNK cells, rather than the supernatant (Fig. 2). ¹⁹Flabeled hNK cells were then injected into an immune deficient mouse and 19F signal accumulation was noted intra-tumor and on the periphery of the tumor (arrows in Fig 3). However, ¹⁹F background signal contamination was observed (arrowheads in Fig. 3) due to Iso anesthesia. Iso was compared to Ket/Xyla to determine the extent to which Iso impeded interpretation of ¹⁹F images. The results point to a strong background ¹⁹F signal from Iso contamination (Fig. 4).

Conclusions: ¹⁹F labeling of natural killer cells has been confirmed in-vitro, both with imaging and spectroscopic analysis. hNK infusion into a lymphoid tumor-bearing mouse showed that

Fig. 1: MR images showing dose-dependent signal of ¹⁹F-labeled mouse NK cells.

Fig. 2: ¹⁹F NMR spectroscopy of PFPE in (left) supernatant of hNK cells, and (right) hNK cells post-washing and lysis.

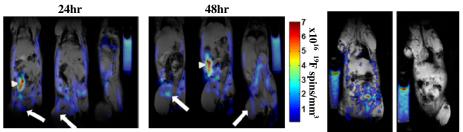


Fig. 3: ¹⁹F signal in a lymphoid tumor (arrows) bearing mouse 24 hours (left) and 48 hours (right) following hNK injection. ¹⁹F signal contamination noted (arrowheads).

Fig. 4: ¹⁹F signal in mice anesthetized with (L) Iso and (R) Ket.

hNK cells can be successfully detected in-vivo, but there is some variance in the ¹⁹F signal in the region of tumor. Given confounding fluorine signal contamination from Iso gas anesthesia, future studies will utilize Ket/Xyla anesthesia to eliminate background fluorine. NK cells can be labeled with ¹⁹F and detected in-vitro and in-vivo, but background fluorine signals can interfere with detection by MRI.

References: [1] Miller et al. *Blood*. 2005. 105(8):3051-3057. [2] Ruggeri et al. *Science*. 2002. 295(5562):2097-100. [3] Murphy et al. *Imm. Rev*. 2001. 181(1): 279-289. [4] Srinivas et al. *MRM*. 2007. 58:725-734. [5] Helfer et al. *Cytotherapy*. 2010. 12:238-250.