

Improved throughput of hyperpolarized substrates by $^1\text{H} \rightarrow ^{13}\text{C}$ cross-polarization DNP

Sami Jannin^{1,2}, Aurélien Bornet¹, Jonas Milani¹, Basile Vuichoud¹, Roberto Melzi³, Angel J. Perez Linde¹, Patrick Hautle⁴, Ben van den Brandt⁴, Joost Lohman⁵, and Geoffrey Bodenhausen^{1,6}

¹EPFL, Lausanne, Vaud, Switzerland, ²Bruker BioSpin AG, Fallanden, Zurich, Switzerland, ³Bruker Italia, Milano, Italy, ⁴PSI, Villigen, Switzerland, ⁵Bruker UK Limited, Coventry, United Kingdom, ⁶Département de Chimie, ENS, Paris, France

Target audience: Scientists interested in hyperpolarization in general, and eager to learn about new possibilities for ^{13}C *in-vitro* and *in-vivo* metabolic imaging.

Purpose: ^{13}C hyperpolarization offers new avenues for *in-vivo* metabolic imaging as it can provide sensitivity enhancements by factors exceeding four orders of magnitude. Recently the group of S. Nelson *et al.* has demonstrated the usefulness of the method for detecting human tumors and monitoring drug response.[1] A major drawback of ^{13}C hyperpolarization stems from the intolerably long preparation times for achieving decent polarization levels $P(^{13}\text{C}) > 20\%$, which usually takes an hour or more. Sophisticated systems have been designed for parallel hyperpolarization of up to 6 samples per day.[2] However, routine preclinical or clinical implementation of ^{13}C hyperpolarization would require a much higher sample throughput, say about 24 samples per day with $P(^{13}\text{C}) > 20\%$ at intervals of, say, 30 minutes

Methods: We show herein an efficient route for rapidly generating ^{13}C hyperpolarization on molecules such as pyruvate at polarization levels exceeding $P(^{13}\text{C}) > 40\%$ in less than 30 minutes. The method begins by the rapid and efficient hyperpolarization of ^1H spins ($P(^1\text{H}) > 80\%$ in less than 5 minutes) at low temperature and high field ($T = 1.2$ K and $B_0 = 6.7$ T) using the inexpensive polarizing agent TEMPOL, in combination with rapid $^1\text{H} \rightarrow ^{13}\text{C}$ polarization transfer by cross-polarization (CP) at low temperature in typically less than 2 ms. If there are no ^1H spins in the (deuterated) molecule of interest, it is sufficient to add some H_2O to the frozen glassy solution.[3-5]

Results: Figure 1a shows the ^{13}C polarization build-up in $[1-^{13}\text{C}]$ pyruvate $T = 1.2$ K and $B_0 = 6.7$ T with 50 mM TEMPOL as polarizing agent. The ^{13}C polarization builds up by applying CP every four minutes while the proton DNP is sustained by microwave irradiation. A polarization level $P(^{13}\text{C}) > 30\%$ is attained in 16 minutes and $P(^{13}\text{C}) > 45\%$ in 30 minutes. After dissolution and transfer to the liquid state, a significant part of the polarization is preserved, with $P(^{13}\text{C}) > 40\%$. Figure 2b shows the relaxation of $[1,2-^{13}\text{C}]$ acetate in solution hyperpolarized by CP-DNP.

Discussion and Conclusion: Dissolution CP-DNP enables high throughput of highly polarized solutions and is fully compatible with *in-vivo* metabolic imaging studies. CP-DNP is best carried out with inexpensive nitroxide radicals such as TEMPOL and is also readily applicable to other low- γ nuclei such as lithium-6 or nitrogen-15.

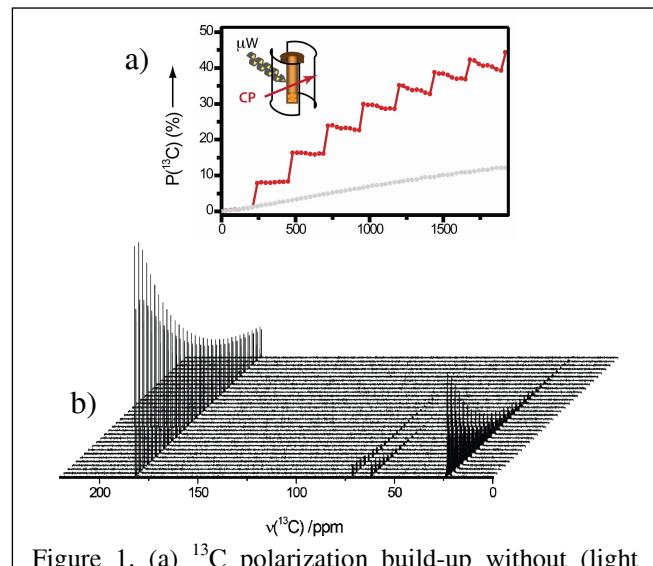


Figure 1. (a) ^{13}C polarization build-up without (light grey) and with (dark red) cross-polarization. (b) Decay of hyperpolarized $[1,2-^{13}\text{C}]$ acetate signals measured every 5 seconds.

References: [1] Nelson, S. *et al.* Sci Transl Med 2013, **5**, 198ra108 [2] Ardenkjaer-Larsen, J. H. *et al.* NMR Biomed. 2011, **24**, 927. [3] Jannin, S. *et al.* Chem. Phys. Lett. 2011, **517**, 234. [4] Jannin, S. *et al.* Chem. Phys. Lett. 2012, **549**, 99. [5] Bornet, A. *et al.* J. Phys. Chem. Lett. 2013, **4**, 111-114