

Assessment of Scan-Rescan Variability in DCE-MRI Parameters Using Multiple Models

Edward Ashton¹, Jean Tessier², and Oliver Krieter³

¹Imaging Science, VirtualScopics, Inc., Rochester, NY, United States, ²F. Hoffman-La Roche Ltd., Basel, Switzerland, ³Roche Diagnostics GmbH, Penzberg, Germany

Target Audience: This abstract should be of interest to anyone with an interest in the use of DCE-MRI for the assessment of change over time in blood flow and vascular permeability in either tumors or normal tissues.

Purpose: This experiment was designed to assess the scan-rescan reproducibility in the measurement of several vascular parameters obtainable from DCE-MRI scans in patients with GBM, and to determine if there are differences in the reproducibility of parameters measured using three different analysis models. Assessment was also made for two model-free parameters.

Methods: IRB approval was obtained for this experiment, and all patients provided informed consent. Dual baseline DCE-MRI scans were acquired for a total of six patients with GBM, with temporal separation between scans ranging from 2 – 6 days. Data were acquired using a 3D fSPGR sequence with a 6cm slab and 28cm FOV. TE/TR/FA were 1.0/3.1/26. Data were reconstructed into 12 5mm slices with a 160x128 acquisition matrix. Temporal resolution was ~2.9s/phase. Data were analyzed by VirtualScopics (Rochester, NY, USA) using internally developed software. Tumor boundaries were identified by a radiologist, and an arterial input function (AIF) was estimated for each DCE scan¹. Vascular parameters were estimated using three separate models: Standard Tofts², Extended Tofts², and Distributed Parameter³. Two model-free AUC parameters were also estimated: IAUC₉₀ (area under the tumor time-concentration curve over the first 90s post-injection), and AUCBN₉₀ (IAUC₉₀ normalized by the area under the AIF over the same period).

Coefficients of variability (CoV) were estimated for each calculated parameter using the following process: 1. For each pair of measurements, calculate both mean and standard deviation. 2. For each pair, produce an adjusted SD by multiplying the SD by 1.25331 (this adjusts for the bias resulting from estimation using n=2). 3. For each pair, produce a local CoV by dividing the adjusted SD by the mean. 4. Produce a global CoV by averaging the local CoV across all pairs.

Results: CoV were calculated using 6 data points. Data for one patient were excluded due to a large difference in AIF between scans, which rendered the data non-comparable. Measurements were included for two separate tumors for one of the remaining five patients. CoV for the measured parameters are given in Table 1:

Table 1: Coefficients of variability for each measured parameter.

Model	Parameter	CoV	95% CI
Standard Tofts	K ^{Trans}	12.1%	0.1% - 25.2%
Extended Tofts	K ^{Trans}	23.4%	7.9% - 39.0%
Distributed Parameter	PS	39.7%	12.9% - 66.5%
None	IAUC ₉₀	26.5%	5.6% - 47.4%
None	AUCBN ₉₀	16.5%	3.7% - 29.2%

Discussion and Conclusions: Variability results for K^{Trans} (Standard) and AUCBN₉₀ were generally in line with those that have been reported previously¹. Substantially higher variability was seen for other parameters, although differences failed to achieve statistical significance even in the comparison between K^{Trans} (Standard) and PS ($p = 0.13$), presumably due to the small number of samples. Improved variability for AUCBN₉₀ relative to IAUC₉₀ is as expected, as a result of compensation for differences in injection, cardiac output, etc., which are reflected in the AIF. Greater variability in the Extended Tofts model relative to the Standard Tofts model appears to be largely a result of ambiguity between K^{Trans} and vp in the Extended model, while greater variability in the Distributed Parameter model appears to be largely due to noise sensitivity in the de-convolution process that model requires.

References:

1. Ashton E, Raunig D, Ng C, Kelcz F, McShane T, Evelhoch J: Scan-Rescan Variability in Perfusion Assessment of Tumors in MRI Using Both Model and Data-Derived Arterial Input Functions. *J Magn Reson Imag* 2008; 28:791.
2. Tofts P: Modeling tracer kinetics in dynamic Gd-DTPA MR Imaging. *J Magn Reson Imag* (1997) 7:91.
3. Thng C, Hartono S, Koh T, et al., Dynamic contrast enhanced MRI (DCE MRI) for Phase I anti-angiogenic tiral: Comparison of the transfer constant (K^{Trans}) to blood flow and permeability derived by a distributed parameter model. *J Clin Oncol* (2008); 26 (May 20 suppl; abstr 3514).