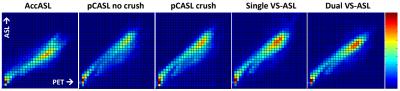
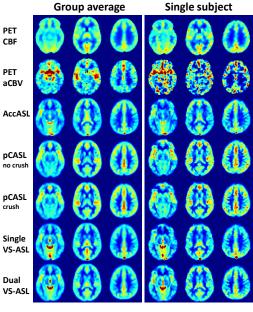
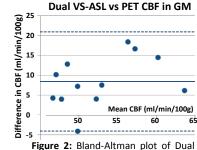
Comparison of velocity and acceleration selective arterial spin labeling with ¹⁵O H₂O positron emission tomography.

Sophie Schmid*¹, Dennis F.R. Heijtel*², Henri J.M.M. Mutsaerts², Ronald Boellaard³, Adriaan A. Lammertsma⁴, Aart J. Nederveen², and Matthias J.P. van Osch¹ ¹C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands, ²Radiology, Academic Medical Center, Amsterdam, Netherlands, ³Radiology, VU University Medical Center, Amsterdam, Netherlands, ⁴Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, Netherlands

Purpose: Pseudo-continuous arterial spin labeling (pCASL) is nowadays regarded as the most reliable and robust ASL technique^[1], although quantification is sensitive to increases in arterial transit time. Velocity-selective ASL (VS-ASL)[2,3] and acceleration-selective ASL (AccASL)^[4] are spatially non-selective ASL methods that tag spins based on their flow velocity or acceleration, respectively, instead of spatial localization. These non-spatial ASL methods label, therefore, spins within the imaging plane, making them more robust against transit time effects. The aim of this study was to compare AccASL and VS-ASL with ¹⁵O H₂O PET.


Materials and Methods: VS-ASL (both with single and dual velocity encoding modules, v_{enc} =2cm/s, delay=1600ms) and AccASL (δ =1ms, Δ =26ms, G=30mT/m, τ =14ms, delay=1600 ms) were performed in 12 healthy volunteers (6m/6f, age 20-24 yrs.) on a 3T Philips Intera system using an 8-channel receive head-coil. pCASL-scans (1650ms labeling and 1525ms delay, acquired with and without flow crushing gradients) were acquired to serve as references. PET scans were performed on a Philips Gemini TF-64 PET/CT system (800 MBg bolus; 25 frames with progressively increasing duration; total duration 10min; processing provided both cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV) maps; aCBV maps can be affected by delay and dispersion effects, which was checked for by visual inspection leading to the exclusion of 3 subjects). Images were motion corrected and registered into MNI-space using FSL. The average of all scans was thresholded to obtain a grey matter (GM) mask. The scans were compared to PET by calculating voxel-wise The aCBV-fraction at maximum R² was interpreted as the aCBV contribution of the ASL scan.


Dua correlations (R2) between individual ASL and PET scans. A Bland-Altman analysis was performed to compare dual VS-ASL (the only quantitative non-spatial ASL scan)^[5] with PET CBF^[6]. To study whether the ASL methods are (also) sensitive to aCBV, the group-averaged maps were correlated with a weighted sum of PET CBF and PET aCBV (performed only with the non-quantitative data, n=9) to compare the relative distribution of the signal in the maps.


Table 1: Whole brain correlation coefficient, R², (mean ± SD) of ASL versus PET CBF evaluated at subject level (n=12).

	AccASL	pCASLnocrush	pCASL _{crush}	Single VS-ASL	Dual VS-ASL
Correlation with PET CBF	0.88 ± 0.04	0.92 ± 0.02	0.93 ± 0.02	0.85 ± 0.05	0.92 ± 0.02
Figure 2: Voyalwisa	AccASL	pCASL no crush	pCASL crush	Single VS-ASL	Dual VS-ASL

correlation density of ASL versus PET CBF of whole brain intensity normalised group averaged maps (see colorbar).

VS-ASL versus PET CBF.

Results: The group average and a single subject example are shown in Figure 1 and the Bland-Altman plot of dual VS-ASL and PET-CBF (mean GM CBF of 56.9±7.4 and 48.5±5.2ml/100ml/min, respectively) in Figure 2. Table 1 shows comparable R² for dual VS-ASL as for pCASL; AccASL and single VS-ASL show lower R², evaluated voxelwise at the single subject level. Maximizing R², with respect to a weighted sum of PET CBF and aCBV, showed only minor aCBV information from AccASL (see Table 2, evaluated on the group averaged maps). In Figure 3 the whole brain intensity normalised group average of the ASL signal is plotted versus PET-CBF voxelwise.

Discussion and Conclusion: Quantitative VS-ASL (i.e. two VS modules separated by 1.6s) overestimated GM CBF by 17% compared to PET. With only a single VS module the mean correlation with PET CBF was lower and comparable with AccASL. It has been postulated that both single VS-ASL and AccASL would be more CBV- than CBF-weighted, since they label all blood in the imaging plane within a certain velocity/acceleration range. The lower R² with PET-CBF seem to support this hypothesis. However, by maximizing the R² as a function of a weighted sum of PET CBF and aCBV maps using group-averaged maps, a relative lower contribution was found than for pCASL. This could be explained by more weighting towards total CBV than aCBV for single VS-ASL and AccASL. Finally, it should be noted that the change in R² by including a fraction of aCBV was minor for all scans.

Table 2: Whole brain correlation coefficient of ASL with weighted sum of group averaged PET CBF and aCBV maps (n=9).

Max correlation 0.87 0.87 0.87 0.79 0.84 % contribution of PET aCRV 12 25 27 24 28		AccASL	pCASL _{nocrush}	pCASL _{crush}	Single VS-ASL	Dual VS-ASL	
% contribution of PET aCRV 12 25 27 24 29	Max correlation	0.87	0.87	0.87	0.79	0.84	
/8 CONTINUATION OF PET-8CBV 13 33 37 24 38	% contribution of PET-aCBV	13	35	37	24	38	

Acknowledgement: This research is supported by the Dutch Technology Foundation STW, applied science division of NWO and the Technology Program of the Ministry of Economic Affairs.

References: [1] ASL white paper, MRM, 2013, [2] Wong et al., ISMRM, Abstracts p.621, 2002, [3] Wong et al., MRM 55: 1334-1341, 2006, [4] Schmid et al., MRM epub, 2013, [5] Wu et al., NeuroImage 32(1): 122-128, 2006, [6] Boellaard et al., Mol Im Biol 7: 273-285, 2005