# Signal-to-noise ratio of perfusion mapping using multiphase pseudocontinuous arterial spin-labeling MRI

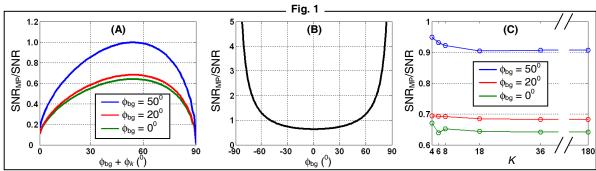
Wen-Chau Wu<sup>1,2</sup>, Shu-Fen Jiang<sup>3</sup>, and Shu-Hua Lien<sup>3</sup>

<sup>1</sup>Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan, <sup>2</sup>Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, <sup>3</sup>Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan

#### Introduction

Pseudocontinuous arterial spin-labeling (PCASL) has been previously shown to offer a good balance between signal-to-noise ratio (SNR) and labeling efficiency ( $\alpha$ ) (1). However, the  $\alpha$  of PCASL is more sensitive to field inhomogeneity than that of pulsed labeling. Multiphase PCASL (MP-PCASL) (2), one of the several schemes (3-5) proposed to remedy or calibrate  $\alpha$ , estimates the undesired phase accrual ( $\phi_{bg}$ ) as a consequence of background field by tracking image intensities with varied phase offsets ( $\phi$ ) in the labeling pulses. The choice of  $\phi$ 's depends on the trade-off between scan time and the accuracy of  $\phi_{bg}$  estimation. In the present study, we investigated the feasibility of generating flow maps by combining the images obtained at a subset of  $\phi$ 's. For a given scan time, SNR was compared with single-phase PCASL (SP-PCASL) using numerical simulation and experimental data.

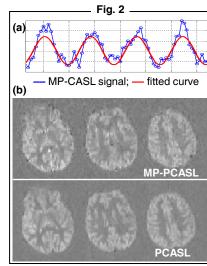
#### **Materials and Methods**


A. SNR Simulation. The SNR ratio of MP-PCASL to SP-PCASL can be expressed in Eq. [1] where  $\alpha_0$  is the optimal efficiency that is to be determined in MP-PCASL by estimating  $\phi_{bg}$ . For SP-PCASL, SNR was calculated from the average difference image (dM). For MP-PCASL, 2K phase offsets were equidistantly distributed from 0 to  $2\pi$ , which rendered K dM images and k of which were combined

$$\frac{SNR_{MP}}{SNR_{SP}} = \frac{k}{\sqrt{K\sum_{i=1}^{k}W_{i}^{2}}} \cdot \frac{\alpha_{0}}{\alpha}$$
[1]

using a scaling factor W. The dM's combined were those with the k smallest  $W_i^2$ . Given that dM is proportional to  $\alpha$ ,  $W_i$  (i=1,2,...,k) is the ratio of fitted peak dM to dM<sub>i</sub>, and was approximated by  $\sec(\phi_{bg} + \phi_i)$  in this study. B. MRI Experiment. The Institutional Research Ethics Committee approved this study. Five healthy volunteers (3 females, 2 males; age = 21-34 yrs) provided individual written informed consent before participation. All MR imaging was conducted on a 3T system (Siemens, Erlangen, Germany). RF energy was transmitted by the body coil and received by a 16-channel phased array. PCASL imaging was based on a single-shot gradient-echo echo-planar readout and the following parameters: TR = 4.3 s, TE = 20 ms, labeling duration = 2 s, post-labeling delay = 1.5 s, field-of-view = 20 cm, matrix = 64x64, twelve 5-mm axial slices, 72 measurements. MP-PCASL was performed with 18  $\phi$ 's varied from  $0^0$  to  $340^0$  in steps of  $20^0$  (4 measurements for each  $\phi$ ). Two reference images were acquired for coil sensitivity correction and flow calculation (3). A gray matter mask was generated by segmenting the reference image received with the body coil. Within the mask, the average signal change over  $\phi$ 's was used to estimate  $\phi_{bg}$ .

### **Results and Discussion**


Fig 1 shows the simulated SNR ratio between MP-PCASL and SP- PCASL. In (a), SNR<sub>MP</sub> increases with k (the number of dM's combined) and peaks when the absolute value of  $W_k$ ' is approximately 1.7 (i.e.,  $\phi_{\text{bg}} + \phi_k \sim \pm 55^0$ ,



or  $\pm 125^{0}$ ). Including dM's with a W greater than 1.7 deteriorates  $SNR_{MP}$  because of their low SNR. In (b),  $SNR_{MP}/SNR_{SP}$  is less than 1 when  $\phi_{bg}$  is within  $\pm 50^{0}$  (or  $n \cdot 180^{0} \pm 50^{0}$ , n = integers) beyond which combined MP-PCASL starts to have the SNR gain relative to SP-PCASL. In (c),  $SNR_{MP}$  slightly decreases when K increases. Of note, with fixed scan time (or fixed total number of measurements), a larger K provides more samples over phase offsets but each sample is more sensitive to noise (because of less measurements for average). **Fig 2** shows the data from a representative subject. In (a),  $\phi_{bg}$  was estimated to be  $29^{0}$ . In (b), dM maps obtained with combined MP-PCASL and SP-PCASL are comparable although noise is more noticeable in the MP-PCASL maps. In summary, the measurements of individual phase offsets in MP-PCASL can be combined to provide perfusion mapping with  $SNR \ge 0.6$ -fold of SP-PCASL. The gain of SNR is expected to appear when the background phase exceeds  $50^{0}$ .

# References

- 1. Garcia DM, et al, Proc ISMRM 2005, p.37. 2. Jung Y, et al, Magn Reson Med 2009;64:799-810.
- 3. Wu WC, et al, Neoimage 2011;56:1244-1250.
- 4. Jahanian H, et al, NMR Biomed 2011;24:1202-1209.
- 5. Shin DD, et al, Magn Reson Med 2012;68:1135-1144.

