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Quantitative evaluation of biophysical models of the diffusion with in vivo data by assessment of the generalization error 

Benoit Scherrer1, Maxime Taquet1, Mustafa Sahin2, Sanjay P Prabhu1, and Simon K. Warfield1 
1Radiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States, 2Neurology, Harvard Medical School, Boston Children's Hospital, 

Boston, MA, United States 
 

PURPOSE – Biophysical models of the diffusion focus on describing the MR signal formation with a model whose parameters reflect the underlying 
biophysical mechanisms. They are of great interest to characterize and compare tissue properties. Their practical evaluation, however, remains 
challenging. We propose here a novel framework for comparing biophysical models with in vivo data.  

THEORY – Our hypothesis is that a biophysical model that well captures the underlying biophysical mechanisms ought to be able to accurately 
predict the signal for new gradient directions and strengths. This can be measured by assessing the generalization error of the model. Given 

 with  the set of  observed data points, in which  are inputs to the model (the b-values and gradient directions 

in diffusion images) and  are outputs (the signal attenuation in diffusion images), and given the model  that predict the outputs  from an 
input , the generalization error is defined by:  [ : new data point following the distribution ; : 

generalization error conditional on the observed data; : accounts for the variability of the observed data points]. Because the distribution  is  unknown, 

the generalization error cannot be computed exactly. Leave-one-out cross validation provides an estimate of  with low bias but high variance. K-
fold cross validation provides an estimate with lower variance but higher bias. Instead, Efron et al introduced the 632 bootstrap approach1 which 
counterbalances the positive bias of the fitting error by the negative bias of the leave-one out cross-validation bootstrap estimate, by computing: 

 

where B is the number of boostrap iterations,  is the number of times sample i is used in the training set of the bth bootstrap replicate and  is 

the Dirac function. The factor  guarantees that sample i can be used as a testing sample in the bootstrap replicate b. The B632 estimate of the 
generalization error was shown to have low bias and low variance1. 

METHODS – We evaluated five biophysical models of the diffusion: (1) the single tensor model, (2) NODDI2, (3) a model with one anisotropic 
tensor and one isotropic tensor to model free water diffusion (Diso=3x10-3 mm2/s) (1T+iso), (4) a model with one DIAMOND compartment3 and an 
isotropic compartment (1DIAMOND+iso) and (5) a model with up to three DIAMOND compartments and an isotropic compartment 
(3DIAMOND+iso). The number of fascicles was estimated at each voxel by minimizing the generalization error. We compared the models using a 
CUSP65 acquisition4 (FOV=240mm, matrix-size=128x128, 68 slices, resolution=1.8x1.8x2mm3, TE=78ms, TR=10.1s, ~12min acquisition time) which provides a 
large number of different b-values between 1000s/mm2 and 3000s/mm2 with low TE and high SNR. We computed the generalization error using 
B=300 bootstrap iterations. 

RESULTS  – We report a coronal view the generalization error maps computed for the five models. Fig.f reports the table of the corresponding 
average generalization errors.  
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DISCUSSION  – Fig.a shows that DTI is the worst predictor of the diffusion signal, likely because it does not account for the non-monoexponential 
decay. NODDI (Fig. b) provides a lower generalization error in regions of crossing and close to the cortex because models the fascicle dispersion in 
each voxel, and accounts for freely diffusing water. However, Fig.c shows that 1T+iso better predicts the signal than NODDI. This is likely because a 
number of parameters are fixed in NODDI (fixed parallel diffusivity, no radial diffusivity) which is inconsistent with the imaging data. Fig.c shows 
that estimation of all the parameters of  the 1T+iso model enables ultimately better prediction of the signal. Fig.d shows that accounting for the 
heterogeneity of each compartment by estimation of a DIAMOND model for each of them slightly improves the generalization error in regions of 
crossings. Finally, Fig.e shows that accounting for each fascicle in each voxel and accounting for the compartment heterogeneity provides the best 
generalization error in these regions. 

CONCLUSION  – We proposed a novel framework to achieve quantitative evaluation of biophysical models of the diffusion with in-vivo data. It 
enables identification of the model that best predicts the diffusion signal, and therefore identification of the model that best captures the underlying 
biophysical mechanisms. It is important to note that there is no absolute best model. This is strongly dependent on the acquisition. In future work we 
will investigate the optimal choice of diffusion model for various acquisition schemes and acquisition duration time. 
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