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Target audience Investigators using diffusion-weighted 
MRI (DWI) data and clustering algorithms, interested in 
quantitative validation to research and clinical purpose. 
Purpose The thalamus is a midline symmetrical 
structure situated between cortex and midbrain. 
Myelinated axons emerge from several thalamic nuclei 
and terminate in the cerebral cortex. We present an 
algorithm that segments the thalamus based on 

diffusion-weighted MRI (DWI) data without manual 
intervention. The key advantage of the approach is 
provided by the use of so-called dissimilarity-based 
representations (DBR) to combine data from multiple 
input sources and modalities into a single metric (Figure 1). The algorithm 
generates thalamic segmentations and evaluates their accuracy by computing 
clusters’ (a) hemispheric symmetry and (b) quality of the prediction the 
segmentation produces on an independent set of DWI. We present the methods 
and illustrate the segmentation results in relation to two thalamic atlases obtained 
with different approaches1, 2. 
Methods We acquired DWI data of 5 subjects with 96 diffusion-weighting directions 
(ܾ ൌ  ଶ, resolution 1.5݉݉ isotropic) at 3T and used the measurements to݉݉/ݏ4000
segment the thalamus. Segmentations were generated by a weighted combination 
of local diffusion measurements (ܹܦ) and spatial coordinates (ܿ). We used k-
means clustering on the combination of ܹܦ and ܿ weighted by the factor ߙ. We 
performed cross-validation for finding the ߙ  that generated the thalamic 
segmentation with clusters’ means ܹܦതതതതത  best predicting the measured diffusion 
properties in a second dataset. We computed the symmetry in terms of the spatial 
coordinates between the centroids of each thalamic cluster in the left and right 
hemisphere. Segmentations corresponding to maximizing both accuracy and 
symmetry were retained (Figure 2).  
Results We illustrate the segmentation results in relation to two thalamic atlases 
obtained with different approaches. These segmentations vary substantially. In 
addition to the differences in global shape of the thalamus there is also a 
substantial difference in the way the thalamus can be segmented using different 
methods. On the one side this difference is expected because the atlases use 
different data and information to segment (DWI vs. staining), on the other side it is 
important to be able to compare the different segmentation solutions, i.e. to have a 
mechanism to establish the quality of segmentations. To this end, our algorithm allows for establishing how well a thalamic 
segmentation represents the measured data.  
Discussion Recently there have been a number of attempts to automatically segment the thalamus1, 2. The current method relies on 
three simple assumptions - fascicles’ homogeneity within a nucleus, spatial homogeneity of nuclei, and hemispheric symmetry of the 
nuclei. 
Conclusions Evaluating the accuracy by which a thalamic 
segmentation represents the measured diffusion properties in 
the thalamus and the symmetry of the clusters in the two 
hemispheres provides a suitable metric for automatically and 
reliably segmenting the thalamus in the living human brain. 
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Figure 2 Automatic clustering initialization. Dissimilarity matrix. Left-hand panel, pixels in 
the image represent the Mahalanobis distance in mm between pairs of thalamic voxels. 
Right-hand panel, pixels in the image represent the Euclidean distance between the
demeaned diffusion signal of pair of thalamic voxels. 

Figure 3 Thalamic segmentations evaluation. a. Cross-validated and non-cross-
validated explained variance in the demeaned diffusion signal as function of cluster
number in the segmentation (mean ±1 stdev across individual brains). b.
Comparison of the cross-validated explained variance in the demeaned diffusion 
signal across thalamic segmentations. c. Average ࢻ. 

 
Figure 1 Segmentation optimization. From top left to 
bottom right: Explained variance (V, normalized) in the 
measured fiber orientation modulation as function of 
the contribution (ࢻ) of clusters’ spatial coordinates and 
predicted fiber orientation distribution. Orange and blue 
indicate the right and left thalamic segmentations. 
Explained variance decrease with ࢻ.  Inter hemispheric 
symmetry (S) of thalamic clusters. Symmetry increases 
with ࢻ. Combined validation metric, C. The maximum 
of the curve indicates the value of ࢻ that maximizes 
both V and S. Final clustering result. 
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