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Target Audience: Clinicians/physicists interested in brain microstructure imaging. 
Purpose: To compare parametric diffusion MRI models, which explicitly seek to capture fiber 
dispersion, using in-vivo human brain data.  
 
Introduction: Diffusion MRI probes the tissue microstructure by measuring water dispersion in 
biological tissue. Currently, the standard model for imaging diffusion in tissue is the diffusion tensor 
(DT), which is adequate only for describing major tissue damage. A recent class of parametric models 
has emerged to describe data better, and provide more sensitivity and the specificity, by additionally 
accounting for fiber directional incoherence, which is abundant in the brain, even at a sub-voxel level. 

Methods: Data acquisition and pre-processing: We use a PGSE EPI sequence on a 3T Phillips 
scanner, with cardiac gating and TR=4s. The full protocol uses 32 HARDI shells. Each shell has a 
unique set of 45 directions. The protocol has a wide range of b-values, 218 to 10,308 s/mm2, combining 
δ = {6, 10, 15, 22}ms, ∆ = {30, 50, 70, 90}ms, |G| = {55, 60}mT/m, and three interwoven b=0 s/mm2 
acquisitions. The data is acquired from a healthy male’s corpus callosum (CC), in two separate non-stop 
sessions, each lasting 4.5h. We fit the DT to b=1,202 shell to select a set of voxels with coherently 
oriented principal directions. Voxels with FA>0.6 and principal eigenvector within 2◦ of the assumed 
fiber direction are retained and averaged. Fig. 1 shows this signal. Model Construction: Extracellular 
Compartments: Tensor (modelled through the DT), Zeppelin (cylindrically symmetric Tensor), Zeppelin 
with tortuosity (as in [1]) and Ball (isotropic Tensor). Intracellular Compartments: Sticks are used to 
represent the axonal diffusion, via either a discrete set of two Sticks [2] or an underlying Bingham/Watson 
fiber orientation distribution [3,4,5]. The Bingham distribution is similar to a bivariate Gaussian 
distribution with elliptical contours on the sphere; the Watson is a special case of Bingham, tracing 
circular contours on the sphere. Model Fitting and Selection: We use the Camino toolkit to fit the 
models. Each model is fitted 250 times, using the Levenberg-Marquardt algorithm with a perturbed 
starting point from initial estimates drawn from the DT, to extract the best parameters.  

Results: Table 1 shows the ranking, where single mode orientation distributions (Watson or Bingham) 
outperform two discrete orientations (two-Sticks), and where four groups can be distinguished:  
i) combinations that include an anisotropic extracellular compartment with Bingham/Watson (in red); 
ii) models similar to (i) but using two-Sticks for their intracellular compartment, excluding models that 
use tortuosity or those without a spherically restricted compartment (in blue);  
iii) models incorporating an isotropic extracellular compartment with a Bingham or Watson (in green);  
iv) all exceptions to two-Sticks models in (ii) (in grey).  
As in previous work on this topic [6, 7], an anisotropic extracellular compartment benefits the fitting, as 
does the addition of an isotropically restricted compartment. Fig.2 shows the fit of some models, to 
illustrate the difference between raw signal and that generated from models’ best parameter estimates. 
Bootstrap and cross-correlation analysis (not shown) indicates that the division of the models into the 
four groups above is consistent across randomization, but the ranking of the models can permute 
within the groups.  
 
Discussion: In CC, where various fiber tracts bundle together, there is inhomogeneity that can 
produce a dispersion pattern, which these models may reflect. Averaging voxels across the CC and 
minor misalignments during registration may exaggerate the dispersion; future work will study 
smaller ROIs. We also intend to extend the investigation to other white matter structures that have 
greater dispersion. The findings help identify the best models for future microstructure imaging of 
the brain with diffusion MRI. Experiment design optimization [8] will enable us to find economical 
protocols to support estimation of those models' parameters in practical imaging applications. 
Conclusions: Models that capture fiber dispersion (Watson/Bingham) explain diffusion MRI data 
from in-vivo human white matter better than undispersed models (one or two sticks) even in 
apparently coherent fibers. 
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Fig.1: Signal data. The legend gives b-value (δ | ∆ | |G|).  
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MODELS

481 1.00 10 Zepp.Bing.CSF. 0.56 2.0  
511 1.00 7 ZepT.Wat.CSF. 0.59 2.0  
512 0.98 10 Zepp.Bing.Dot 0.50 2.1  
526 0.98 11 Tens.Bing. 0.65 2.2  
550 0.98 8 ZepT.Bing. 0.62 2.2  
614 0.97 12 Tens.St.St.Dot 0.23 2.0  
635 1.00 12 Tens.St.St.CSF. 0.22 1.5  
703 1.01 8 Ball.Bing. 0.72 2.2  
703 1.01 9 Ball.Bing.CSF. 0.72 2.2  
761 0.96 7 Zepp.St.Dot 0.29 1.9  
801 1.00 10 Tens.Cylinder+CSF. 0.29 1.3  
814 0.98 9 ZepT.St.St.Dot 0.33 1.8  
824 0.96 11 Tens.St.St. 0.28 1.7  
852 0.99 9 ZepT.St.St.CSF. 0.35 1.5  
870 0.97 8 ZepT.St.St. 0.32 1.6  
1135 0.99 8 Ball.St.St. 0.28 1.5  
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n/Bing Ball/Zep/Ten. Stick2

74  89  1  0.29 0.5   0.15
89  1    0.28 0.6   0.13
71  89  1  0.45 0.9   0.04
67  89  1  0.35 1.2   0.9   55
74  89  1  0.38 0.8   
86  4    0.56 0.8   0.7   20 0.14 75 14 0.07
86  5    0.41 0.5   0.3   25 0.17 74 18 0.21
75  88  1  0.28
74  89  1  0.28 0.00
89 1 0.62 0.7 0.09
89 1 0.47 0.3 0.3 12 0.24
86  2    0.50 1.1   0.12 69 12 0.05
84  5    0.52 0.9   0.7   29 0.20 70 17
86  2    0.39 0.9   0.13 66 13 0.12
84  4    0.50 1.0   0.18 71 13
80  6    0.46 0.25 75 10

Stick1/Watson/Bing

Table.1: Ranking for some representative models, as well as various 
model parameters. We also include the estimates (shown in bold) from the 
best model of a previous ranking of non-dispersive parametric models [7].  
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