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Learning microstructure parameters from diffusion-weighted MRI using random forests 
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Target audience: Researchers interested in investigating and estimating indices of permeability; researchers interested in using machine learning 
techniques for medical image analysis. 
Purpose Numerous white matter pathologies of the human central nervous system (CNS), such as multiple sclerosis, spinal cord injury and 
leukodystrophies, are characterised by myelin damage. As the breakdown of the myelin sheath is hypothesised to lead to an increase in axonal 
permeability, there is widespread interest in developing imaging biomarkers based on permeability in order to improve diagnosis and prognosis of 
these conditions. Diffusion tensor imaging (DTI) indices such as the radial diffusivity (RD) have been shown to correlate with myelin damage1; 
however other microstructure features also influence RD, thus reducing its specificity. The Kärger model2 (KM) is a mathematical model that aims to 
directly relate the intracellular water exchange time to diffusion-weighted (DW) MR signals; however it relies on the assumption that the two pools of 
exchanging water are well mixed, which is not the case in white matter tissue where the intra and extra-cellular spaces are spatially separate. More 
recently, apparent exchange rate (AXR) imaging3 has been introduced as an alternative to the KM. However, it still relies on strong assumptions 
about the compartmentation of water into a ‘fast’ and ‘slow’ pool. Given the inherent difficulties involved in deriving analytic models of permeability, 
in this study we construct a computational model using Monte Carlo (MC) simulations and machine learning. We use a regression forest to learn the 
mapping from simulations and obtain an efficient and accurate model for microstructure imaging that accounts for permeability. Previous work by 
Nilsson et al4 generated libraries of microstructure parameters and their corresponding DW MR signals from MC simulations, and used them to find 
the nearest-neighbour microstructure parameters that matched unseen signals; however nearest-neighbour matching typically has poor 
generalization to unseen input data. Here we extend this approach using random forest regression5, which has much better generalization to 
unseen data, i.e. combinations of tissue parameter values not explored in the training set. 
Methods Monte Carlo Simulations: We use MC simulations to generate DW MR signals from 2500 substrates using the diffusion simulator in 
Camino6. White matter is modelled as a collection of non-abutting, parallel cylinders with radii drawn from a gamma distribution (with mean μR and 
standard deviation σR), and each substrate is described by a unique combination of μR, σR, volume fraction f and permeability p. The microstructure 
parameters for each substrate are randomly selected in the ranges: μR∈[0.2,5] μm, σR∈[min(0.1,μR/5), μR/2] μm (this is to ensure that the axon 
radius distributions cover the range observed in histology7), f∈[0.4,0.7], p∈[1x10-3,1x10-6] ms-1. This results in average intracellular water residence 
times of 8-200 ms, which are typical for biological tissue8. Diffusivity d is kept constant at 2x10-9 m2s-1, as we do not try to learn the relationship 
between d and the DW MR signals here. We simulate data using a rich acquisition protocol using all possible combinations of: G={0.02, 0.04, 0.06, 
0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} mTm-1, Δ={5, 10, 20, 50, 100, 200, 500} ms, δ={2, 5} ms. We use DW 
directions both perpendicular and parallel to the cylinders. Each substrate contains 100,000 cylinders and all simulations are performed using 
100,000 walkers and 1000 time steps. We generate two sets of signals: noise-free and SNR=20 (for the non-DW signals). Random Forest 
Regression: We use the scikit-learn machine learning toolbox9 to train a random forest regressor, following the approach of Breiman5, on 2000 of 
the 2500 generated signal vectors. The remaining 500 signal vectors are used for testing. The regressor is trained separately for the noise free and 
noisy data. The forest contains 500 estimators (trees). The maximum depth of each tree is automatically determined during training. 
Results Figure 1 shows scatter plots of the volume fraction f, axon radius index10 α (which reflects both the mean and the spread of the axon radius 
distribution) and permeability p against the values predicted by the random forest regressor for a) noise-free and b) SNR=20 data. Even though the 
data in a) is noise-free, due to the inherent statistical nature of the modelling, we do not observe an exact one-to-one correspondence between the 
predicted and ground truth microstructure parameters. The correlations for all parameters are strong, as indicated by the correlation coefficients. 
There is one clear outlier, which is highly visible in the scatter plots for f and α. The high permeability and small axon radius for this point result in a 
very short intracellular residence time of 8 ms, resulting in effectively free water diffusion over the diffusion times in all measurements in our 
protocol. Thus the random forest regressor is unable to estimate accurate values of f and α in this case. In b) the correlations are weaker for all 
parameters and we see that large values of f are often underestimated. However, correlation coefficients remain reasonably strong. 
Discussion The results of this study demonstrate that microstructure parameters, including membrane permeability, can be learnt from simulated 
DW MR signals using random forest regression, even when the data is noisy. The strong correlation between predicted and ground truth 
permeabilities, even when using noisy data, is promising given the inherent difficulties in estimating this important microstructural parameter using 
existing mathematical models. In future, we intend to extend this work further. Feature selection will allow us to identify the signals that are most 
important for prediction, thus helping to reduce the protocol used in this experiment. We also intend to compare the approach with existing state of 
the art models and other regression techniques. The model we have learnt here is specifically for randomly packed, parallel, non-abutting cylinders; 
however the approach can be easily extended to other tissue configurations, including those with more than two compartments.  
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Figure 1: Scatter plots 
of ground truth versus 
predicted 
microstructure 
parameters for a) 
noise-free data and b) 
SNR=20 data. 
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