Biexponential modeling of diffusion in stroma and epithelium of prostate tissue

Ned Charles¹, Gary Cowin², Nyoman Kurniawan², and Roger Bourne³

¹University of Sydney, Camperdown, NSW, Australia, ²University of Queensland, Brisbane, QLD, Australia, ³University of Sydney, Sydney, NSW, Australia

Target audience: This work is addressed to biophysical modelers, diffusion MRI researchers and cancer imaging researchers.

Purpose: To use high spatial resolution DWI to investigate the non-Gaussian behavior of water diffusion in epithelium and stroma of fixed prostate tissue.

Introduction: Non-Gaussian diffusion behavior observed in the prostate in vivo 1,2 has also been observed in fixed prostate tissue using high spatial resolution DWI with a voxel size of 160 μ m isotropic 3 . Changes in estimated partial volumes of low ADC epithelium and higher ADC stroma explained about 60% of the variation in high ADC signal fraction when multi b-value data was fitted with a biexponential model. However, the 160 μ m voxel size used in that study meant that most voxels contained heterogeneous mixtures of epithelium, stroma, and lumen space. In the study presented here we obtained multi b-value data from 80 μ m voxels in order to more clearly characterize the distinct diffusion properties of normal epithelium and stroma and compare these with cancer epithelium.

Methods: Three 3mm-diameter cores of prostate tissue were obtained from radical prostatectomy specimens of three patients, fixed in formalin, immersed in 0.2% v/v Magnevist, and imaged on a 16.4T Bruker AV700 microimaging system (15 mm solenoid RF coil, Micro5 gradient set) using a 3D spin echo DTI sequence with TE/TR = 28/500 ms, δ/Δ = 2/20 ms. 80 μ m isotropic voxels were acquired with six gradient directions and b-values 0.50, 0.90, 1.42, 2.06, 2.78, 3.59, 4.65 ms/ μ m²) with two reference images at an effective b-value of 0.335 ms/ μ m². SNR_{b=50} = 40. 40 μ m voxels were also acquired at a single b-value of 2.70 ms/ μ m² with geometrical orientation as above. A diffusion tensor was calculated for each b-value in the 80 μ m data set and the mean diffusivity used to calculate a gradient direction independent normalized signal intensity at each b-value. The direction independent normalized data from each voxel was then fitted with a biexponential model of the form:

$$S_b = S_0(SF_1 \cdot exp(-D_1 \cdot b) + (1 - SF_1) \cdot exp(-D_2 \cdot b))$$

Results: Representative data are shown in Fig. 1, with manually selected regions of stroma (S1, S2), normal epithelium-rich glands (E1, E2), and a region (C1) likely to be low grade cancer based on macroscopic tissue features and previous patient biopsy results (however, not confirmed by histopathology). Table 1 shows the mean and standard deviation of the model parameters for voxels within each region of interest.

Discussion: The 80 μ m voxel size used in this study (each voxel containing ~200 cells) is 8× smaller than that used for a previous investigation that applied a biexponential model to DWI signal attenuation in fixed prostate tissue ³. This higher spatial resolution study demonstrates tissue-specific variations in the model parameters. Both D₁ and SF₁ were lower in epithelium-rich regions (E1, E2, C1) than in stromal regions (S1, S2). Both of these differences would lead to a lower ADC in epithelium-rich tissue than in stroma when ADC is derived from a conventional monoexponential model. As suggested previously ³, an increasing partial volume of low diffusivity epithelial

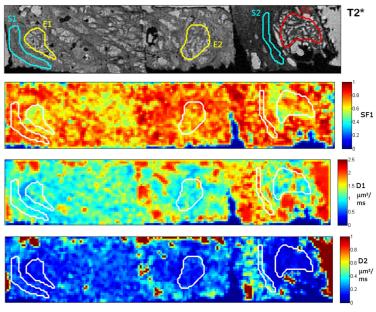


Fig.1 40 μm T₂* weighted image and 80 μm parametric maps

cells, rather than "higher cellularity", may explain the clinical observation of decreasing ADC as prostate cancer Gleason grade increases. The lowest D_2 was found in the C1 region – suggesting a more restrictive diffusion environment in cancerous epithelium than in normal epithelium.

Conclusion: High spatial resolution biexponential modeling of diffusion in fixed prostate tissue demonstrates distinct regional variations in diffusion behavior that correlate with microscopic tissue structure features. Regions dense in glands have a higher proportion of the lower diffusivity component, and this component has lower diffusivity in the glandular regions than in regions of fibromuscular stroma.

Table 1. - Fit parameters for selected regions shown in Fig. 1 (Mean ± SD)

Region	S1 (n=156)	S2 (n=89)	E1 (n=123)	E2 (n=189)	C1 (n=248)
SF ₁	0.76 ± 0.07	0.78 ± 0.11	0.61 ± 0.06	0.71 ± 0.08	0.65 ± 0.09
$D_1 (\mu \text{m}^2/\text{ms})$	1.23 ± 0.16	1.62 ± 0.29	0.98 ± 0.18	1.07 ± 0.21	1.15 ± 0.28
D₂ ($\mu m^2/ms$)	0.17 ± 0.07	0.27 ± 0.14	0.13 ± 0.03	0.15 ± 0.05	0.10 ± 0.10

References: 1) Mulkern, R.V., et al., J Magn Reson Imaging, 2006. 24(5): 563-568. 2) Shinmoto, H., et al., 2009 J Magn Reson Imaging. 27(3): 355-359. 3) Bourne, R.M., et al., 2012 Magn Reson Med. 68(3): 954-959.