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Target Audience: Clinicians and scientists wishing to map WM fibers using a robust Fiber Orientation Distribution (FOD) from minimal DTI like acquisitions. 
Purpose: The FOD1 is a robust model for mapping crossing WM fibers. However, its angular resolution depends on the spherical harmonic (SH) basis order, which can 
imply a large number of acquisitions: 45, 66, 91 for orders 8, 10, 12. Further, it is necessary to compute the maxima of the SH-FOD to derive the fiber directions1. To 
kill the two proverbial birds with a single stone, a non-negatively constrained sparse recovery was proposed for estimating FODs using Non-Negative Least-Squares 
(NNLS)2 and was used to estimate 24th order FOD tensors from 32 acquisitions. 
Here, we experimentally validate and discuss the merits of the NNLS for the constrained sparse recovery of the FOD and compare it with classical l1-minimization. We 
confirm results from literature3 to show that NNLS converges to highly sparse solutions which are correctly constrained, while classical l1-minimization is less sparse, 
contains negative solutions and is unstable with noisy data. Finally, we discuss the NNLS algorithm and attribute the sparsity to its design, which mirrors the design of 
Orthogonal Matching Pursuit (OMP). We conclude that it is the NNLS’s iterative greedy scheme, also the characteristic of OMP, which results in the recovery of a 
sparse support for the NNLS solution. 
Methods: In [2], a single fiber orientation (delta) function was modelled as a rank-1 tensor of order 2n, C= λc(×)2n, the FOD as a decomposable tensor parameterized as 
the sum of r (unknown) rank-1 tensors2: F=ΣrCi, and the response function R(q,u), as a Watson kernel estimated from voxels with high FA (>0.8). The problem of FOD 
estimation was posed as a constrained LS problem: (Eq-1) min{w}||Bw-s||2 st. w≥0, with w a 321D-vector corresponding to an initial estimate of r0=321. Finally, Eq-1, 
was solved with an additional sparsity constraint on w to also estimate the correct number of fibers r*. This was accomplished by using NNLS. 
However, sparsity problems are in general solved using methods such as l1-minimization6,7,3 or OMP5 variants. Here we compare l1-minimization7, which guarantees 
sparsity but not non-negativity, for the FOD estimation, with the NNLS approach, which offers non-negativity and experimentally also sparsity2,3. In keeping with [3,7], 
we formulate three problems out of Eq-1: (P1) min||w||1 st. Bw=s; (P2) min||w||1 st. ||Bw-s||2 ≤ε (to account for noise); and (P3) Eq-1 solved by NNLS. (P1) & (P2) use 
l1-minimization but do not account for w≥0, whereas (P3) accounts for w≥0 but not sparsity explicitly. We test on synthetic data generated from a bi-tensor model2, 
with the single fiber’s FA=0.8, b=1500s/mm2 and 32 acquisitions. We consider both noise-free signal and signal corrupted by Rician noise with SNR=20 (and 50 tests). 
 
Results: We vary the crossing angles from 90o-0o but only present results for 45o. We estimate 24th order FOD tensors and present the “raw” sparsity of w from the three 

problems without any heuristic cleaning2. 
Fig. 1: (The x-axis represents the 321-
coordinates of w, the y-axis the  value of wi). 
The first row presents the results on noise-
free signal. (P1) & (P2) generate, as 
expected, near identical, sparse solutions 
containing negative weights, although these 
are almost insignificant. However, (P3) 
generates a non-negatively constrained 
solution, which is considerably sparser. This 
is in agreement with [3]. In each case there 
are clearly two “main” weights in w which 
correspond to the two fibers crossing at 45o. 
The second row presents the results on the 
signal corrupted by noise and the sparsity 
displayed in this row is the average of 50 
tests. In this case the classical l1-
minimization is at a clear disadvantage. Both 
(P1) & (P2) generate non-sparse solutions 
with significant negative weights. It is also 
hard to distinguish any “main” weights in w 
in both cases. (P3) on the other hand is 
clearly more robust to noise. It still generates 
non-negatively constrained solutions that  

remain considerably sparse and it is still possible to distinguish two major weights in spite of the effects of noise. Clearly NNLS is the method of choice in this case. 

 
Fig. 2: 24th order FOD tensors estimated from the noise-free signal with varying crossing angles from 90o-0o in steps of 3o. Crossings are detected till 23o. 
Discussion: In Fig. 1, the sparsity demonstrated by NNLS in its solutions is surprising since NNLS does not explicitly account for it. This begs an explanation and a 
closer inspection of the NNLS algorithm. Eq-1, at its face value, contains 321 non-negativity (inequality) constraints and one could think of solving it naively using 
constrained optimization. However, the NNLS algorithm4 uses an active set strategy which proceeds iteratively, incrementally solving the LS functional of Eq-1 by 
grabbing the greediest support at each step while respecting the corresponding inequality constraint. It begins with the initial solution w0=0, and all (321) constraints 
being active. Then in each iteration it greedily searches for a support in the active set that minimizes the LS functional the most and makes this constraint passive. 
However, since this could result in one or more constraint violations in the passive set, it then iterates through the passive set to find the best compromise which 
satisfies the constraints and updates the active and passive set of constraints.  
This iterative greedy strategy of NNLS closely mirrors the greedy strategy of the OMP algorithm5. In fact, OMP as a heuristic algorithm has been successfully used in 
literature to recover solutions constrained to be sparse, because it begins with a 0 vector solution and iteratively proceeds to incrementally add the greediest support in 
each iteration that best minimizes its functional. This iterative greedy strategy results in a sparse solution.  
Not surprisingly, therefore, the NNLS also results in a sparse solution – the only difference between NNLS and OMP being that OMP does not constrain its support to 
be non-negative. NNLS, therefore, heuristically results in a sparse solution that is also non-negative. 
Conclusion: We experimentally compared the NNLS to classical l1-minimization for the estimation of FOD formulated as a non-negatively constrained sparse recovery 
problem2. In agreement with the literature3, we found NNLS superior to l1-minimization in sparsity and robustness to noise. Finally we attributed the sparsity of NNLS 
to its iterative greedy design4. This mirrors the design of OMP and its variants5, which are historically proven heuristic methods popularly used for sparse recovery. 
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