A fast and robust method for simultaneous estimation of mean diffusivity and mean tensor kurtosis

Brian Hansen¹, Torben E. Lund¹, Ryan Sangill¹, and Sune N. Jespersen^{1,2}

¹CFIN/MindLab, Aarhus University, Aarhus, Denmark, ²Dept. of Physics and Astronomy, Aarhus University, Denmark

Target audience: Researchers with an interest in diffusion kurtosis imaging, diffusion-MR method development, and the clinical application of kurtosis imaging. Purpose: Diffusion kurtosis imaging (DKI) is a popular extension of diffusion tensor imaging (DTI) accounting for nongaussian aspects of diffusion in biological tissue¹. Recently, several studies have indicated enhanced sensitivity of mean kurtosis (MK) to tissue pathology, including stroke²⁻⁴. However, relatively lengthy acquisition time and postprocessing required to estimate kurtosis metrics hamper further investigations. Recently a fast acquisition and postprocessing scheme for estimation of mean tensor kurtosis was proposed and demonstrated on large diffusion MR data sets from fixed rat brain and in-vivo human brain⁵. This protocol requires only 13 diffusion weighted images (scan time less than one minute), followed by postprocessing of few seconds in duration. Here we consider a refinement with increased accuracy in the estimate of mean tensor kurtosis with minimal additional scan time and no added computational time.

Theory: The method in ref. 5 aims to estimate the orientational average \overline{W} of the kurtosis $W(\hat{n}) = \sum_{ijkl} W_{ijkl} n_{il} n_{il} n_{il} n_{il}$ observed along a direction \hat{n} : $\overline{W} = 1/(4\pi) \int d\hat{n} W(\hat{n}) = \text{Tr}(W) / 5$. Here W_{ijkl} is the kurtosis tensor appearing in the cumulant expansion of the diffusion signal S (here normalized to b=0):

$$\log S(b,\hat{n}) = -bD(\hat{n}) + (b^2/6)\bar{D}^2W(\hat{n}) + O(b^4)$$
(1)

scheme over the 1-3-9 scheme. On inspection, maps of \overline{W}_{19} and \overline{W}_{99} are both quite similar to maps of \overline{W} (fig. 1). A closer scrutiny reveals slight improvements in agreement between \overline{W}_{99} and \overline{W} over \overline{W}_{39} , e.g. as marked in fig. 1 with a black ellipse in the \overline{W}_{99} map. Generally, improved agreement is seen in areas of high \overline{W} which

where $D(\hat{n})$ is the diffusivity. Because of Eq. (1), linear combinations of $W(\hat{n})$ along different directions as in the trace operation can be directly estimated by combining log of signals with diffusion gradients along corresponding directions. In ref. 5 a set of nine directions were proposed fulfilling

$$\frac{1}{15} \left(\sum_{i=1}^{3} \log S(b, \hat{n}^{(i)}) + 2 \sum_{i=1}^{3} \log S(b, \hat{n}^{(i+)}) + 2 \sum_{i=1}^{3} \log S(b, \hat{n}^{(i-)}) \right) = -b\overline{D} + 1/6b^2 \overline{D}^2 \overline{W}$$
(2)

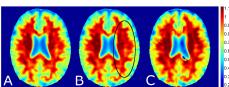
where $\hat{n}^{(i)}$, $\hat{n}^{(i+)}$ and $\hat{n}^{(i-)}$ (i=1,2,3), are defined as $\hat{n}^{(1)} = (1,0,0)^T$, $\hat{n}^{(1+)} = (0,1,1)^T$, $\hat{n}^{(1-)} = (0,1,-1)^T$, and similarly for i=2 and 3; i.e., superscript i in $\hat{n}^{(i+)}$ and $\hat{n}^{(i-)}$ labels the position of the '0'. In order to extract \overline{W} using Eq. 2, an estimate of \overline{D} is required. This was previously ⁵ done by acquiring an additional 3 images along $\hat{n}^{(i)}(x,y,z)$ at a b-value assumed low enough to neglect nongaussian diffusion, and estimating the mean apparent diffusivity from these 3 directions. This allows \overline{W} to be estimated from one b0 image (for normalization), three images at b_1 (eg. $\approx 1000 \text{ s/mm}^2$) and nine images at b_2 (eg. $\approx 2500 \text{ s/mm}^2$). As in ref. 5, we refer to this protocol as the 1-3-9 protocol, and the associated estimate of \overline{W} as \overline{W}_{139} . However, it has been shown that estimates of \overline{D} are improved by including the kurtosis term even at relatively low b-values⁶. Therefore, we consider an extension of the above strategy where signals from the nine directions listed above are acquired at two b-values, b₁ and b₂. Thereby, we can form eq. 2 at two different b-values producing a system of two equations with two unknowns (\bar{D}, \bar{W}) . Solving these, we obtain for \bar{W} and \bar{D} :

$$\overline{W} = 6b_1b_2(A_1b_2 - A_2b_1)(b_1 - b_2)/(A_1b_2^2 - A_2b_1^2)^2 \quad (3a) \quad \text{and} \quad \overline{D} = (b_1^2A_2 - b_2^2A_1)/(b_1b_2^2 - b_1^2b_2) \quad (3b)$$

where A_1 and A_2 denote the left hand side of eq. (2) for the first b-value (b₁) and second b-value (b₂) respectively. We refer to this protocol as the 1-9-9 protocol, and the associated estimate of \overline{W} as \overline{W}_{99} . An additional advantage of the new approach is the direct formula for \overline{W} (eq. (3a)), which allows e.g. its accuracy and precision to be explicitly computed as a function of diffusion weighting (b_1, b_2) . Here we demonstrate this by analyzing the precision of the \overline{W} estimate in the human cortex for various choices of b₁ and b₂ assuming the diffusion signal to be Rician with SNR as in the experiments.

Methods: To evaluate the efficiency of the 1-9-9 scheme, we acquired ten data sets in a normal volunteer in one session. The data consisted of: a) two large data sets of 160 diffusion weighted images each (T protocol in⁸) and b) eight data sets using the 1-9-9 scheme. Each of the two large data sets (a) provided the full kurtosis tensor through a fit to eq. (1). Two ground truth maps of \overline{W} were then produced from the trace of the full kurtosis tensor. From each of the 1-9-9 data sets both \overline{W}_{i39} and \overline{W}_{i99} were obtained.

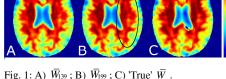
Results: As expected⁵, \overline{W}_{139} provides a good estimate of the true \overline{W} (fig. 1). We therefore focus on assessing the improvement in \overline{W} estimate obtained with the 1-9-9



a more quantitative depiction of the difference, we show in fig. 2 areas where the relative accuracy difference between the two protocols was in the ±1% range as gray (neutral), agreement improved by more than 1% as white and agreement worsened

by more than 1% as black. Neutral voxels are most numerous, but voxels with improved agreement outnumber the pixels where agreement went down. In fig. 3, we illustrate how the sum (over a large cortical ROI) of

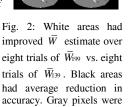
squared relative errors of \overline{W} depends on b_1 and b_2 . This map shows that slightly increased accuracy may be achievable using different



3 b₁ [ms/μm²]

Fig. 3: map of sum of errors in \overline{W} estimate the 1-9-9 scheme function of b-values. Clearly, b₁ and b₂ should not be too close (red areas).

Discussion and conclusion: The 1-9-9 scheme has six additional measurements compared to the 1-3-9 scheme. This adds only a small amount of scan time, so even with the 1-9-9 scheme whole brain estimation of \overline{W} is possible in ~2 min including postprocessing. The 1-9-9 strategy can naturally be extended to include more b-values (1-9-9-9...) allowing parameters to be calculated from an overdetermined data set. This might increase parameter estimate accuracy in situations where the cost of longer scan time is acceptable. A possible further refinement to these strategies is inclusion of the inverted directions at each b-value to compensate for the effects of eddy currents. With almost 50% more data than 1-3-9, the 1-9-9 scheme gave a surprisingly small increase in accuracy. This is encouraging for



neutral. Comparison vs.

two maps of \overline{W} shown.

clinical use of the faster 1-3-9 scheme which has been shown⁵ to provide an accurate estimate of \overline{W} . A clear advantage of the 1-9-9 scheme is that it allows explicit numerical optimization of the b-values used. Future study will show if the predicted improvement is experimentally discernible and whether optimized b-values from the 1-9-9 scheme can fruitfully be transferred to the faster 1-3-9 protocol.

have extents found⁵ to be underestimated in \overline{W}_{139} maps compared to the true \overline{W} . For

References: 1. Jensen, J.H., et al., Magn. Reson. Med., (2005). 53;2. Hui, E.S., et al., Stroke, (2012);3. Jensen, J.H., et al., NMR Biomed, (2011). 24;4. Latt, J., et al. in Proc. Int. Soc. Magn. Reson. Med. 2009; 5. Hansen et al. MRM 69(6) 2013; 6. Veraart et al. MRM 65, 2011; 8. Poot, D.H., et al., IEEE Trans Med Imaging, (2010). 29.