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Introduction: Diffusion kurtosis imaging (DKI) [1] can more accurately characterize non-monoexponential decay with increasing 
diffusion weighting (b-value), as opposed to diffusion tensor imaging (DTI). DKI is also able to differentiate crossing fibers since it fits a 
fourth-order kurtosis tensor in addition to the traditional second-order diffusion tensor. Because the kurtosis tensor is a fully-symmetric 
fourth-order tensor, there are 15 parameters to fit in addition to the 6 from the diffusion tensor for a total of 21. The higher number of 
parameters that need to be fit, in addition to multiple diffusion weightings acquired per direction, result in long scan times that limit the 
usability of DKI. In order to accelerate acquisition time, fewer measurements could be taken and a model-based reconstruction could be 
applied to the acquired data. A model-based algorithm, in which diffusion tensor (DTI) parameters are reconstructed directly from the 
acquired k-space using a compressed sensing construct, has been presented previously [2]. Here, the previous DTI model-based 
approach is extended to undersampled DKI data by reconstructing all 21 unknown variables of the kurtosis and diffusion tensors 
directly from the undersampled k-space data. Its performance is compared against using fully-sampled k-space, reconstructed 
traditionally.  
 

Methods: Model-based reconstruction of undersampled data is performed by fitting the diffusion tensor, D, and the kurtosis tensor, W, 
directly to the acquired data via minimizing the cost function in Eq. (1), where ܧ௡ is the undersampled Fourier operator (Fourier 
transform followed by undersampling of k-space), ݀௡ is the undersampled DTI k-space data, ߮ሺڄሻ is a sparsifying transform (spatial total 
variation) with a regularization weight, ߙ, and ܰ is the total number of diffusion weighted images. The signal model, ܵ௡, is defined in Eq. 
(2), where ܵ଴ is the non-diffusion weighted reference image, b is the diffusion weighting factor, ࢍ௡ is the diffusion encoding directional 
vector, ܦഥ  is the mean diffusivity and ߶௡ is the image phase. Minimization is accomplished via gradient descent, requiring the derivative 
of Eq. (1) with respect to each element of ࡰ and ࢃ. The process is repeated until 
all parameters have converged (within 300 iterations). 

 
To test the performance of the proposed approach, fully-sampled Cartesian k-
space DTI data (64 encoding directions, b = [500, 1000, 2000, 4000] s/mm2, coils 
= 12) were acquired with a healthy patient on a Siemens Trio 3T scanner with an 
EPI readout and TR=8700ms, TE=151ms, voxel size = 2.5 x 2.5 x 2.5 mm3. The 
acquired k-space was retrospectively undersampled to simulate a read out 
acceleration factor, R, of 3. If used in conjunction with SIR [3,4], an overall scan 
time saving of 3 can be achieved while maintaining the same TE if three slices 
are excited for a single diffusion preparation. The performance of the proposed 
model-based approach was compared to fitting ࡰ and ࢃ using a constrained 
linear least squares [5] approach from the fully-sampled k-space data. 
 

Results and Discussion: Figure 1 compares the results of the fully-sampled 
case and the proposed model-based approach. Fig. 1(a) shows a region of 
interest in the resulting FA, Fig. 1(b) shows the primary eigenvectors projected 
on the x-y plane, for reference. Figs. 1(c) – (f) show the spheroid representations 
of the apparent diffusion and kurtosis tensors in areas with FA greater than 0.2, 
which are colored according to their prominent direction and scaled to fit within 
each voxel. The correlation between the fully-sampled and model-based 
apparent diffusion spheroids was 0.98 and the root mean square error of the 
model-based kurtosis spheroids was 0.49. The model-based approach preserves 
the main direction of diffusion and the crossing fibers visualized through the 
kurtosis tensors.  
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Figure 1: Results from reconstruction of diffusion 
kurtosis data. (a) Fractional anisotropy map with 
highlighted region of interest, (b) projected primary 
eigenvectors in ROI, (c) apparent diffusion and (d) 
kurtosis tensor spheroids from fully sampled case, (e) 
apparent diffusion and (f) kurtosis tensor spheroids 
from model-based reconstruction using R = 3 
undersampled data. 
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