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Purpose 
Advanced diffusion imaging methods specify a model which explains the MR signal loss using a set of parameters (e.g. axon 
orientation and diameter). These are generally estimated on a voxel-by-voxel basis, without taking into account the spatial 
correlations we know to be present. But from an anatomical perspective, we expect microstructure to vary smoothly within coherent 
white matter structures – this knowledge is not currently exploited. 

We describe here a novel application of Bayesian statistical modelling, which allows us to exploit spatial correlations in the 
underlying physical parameters in order to obtain better estimates of these parameters. By incorporating knowledge of smoothness 
at the estimation stage, we exploit more information than if we smooth as a post-processing step. 

Methods 
We demonstrate our approach using images of an ex-vivo porcine spinal cord as a biological phantom. This was scanned on a 
7T/30 Bruker Biospec equipped with 400mT/m gradient unit. We acquired data to fit the CHARMED model1 using a stimulated echo 
EPI pulse sequence with the following parameters: Δ/δ=20/3.2ms; b-values of 170,300,460,670,1000s/mm2 with 16 non-collinear 
directions for each shell, with two B0 measurements. 

The CHARMED model describes the signal loss due to diffusion in terms of hindered and restricted components, identified with extra- 
and intra-axonal water respectively. In our Bayesian paradigm, we use this model for the likelihood of the data given the 
parameters. To this, we add a new prior probability distribution for the parameters. We use a Markov random field (MRF) model, 
where we define the prior probability of the parameters in a voxel, given its neighbours.  

This framework is extremely flexible. We can encode many different types of information in the prior, including spatial smoothness. 
Parameter values with a large ‘distance’ from their neighbours are penalised. We define the distance between the tensors 

describing the restricted component using a geodesic distance defined on a Riemannian manifold 
of tensors2. The distance between the angular components is (1-|u·v|), where u and v are the 
vectors describing the directions of the restricted components. For the other parameters, we use 
the absolute difference in the value. 

The penalty does not have to be isotropic – we can allow parameters to differ across edges, but 
smooth more homogeneous areas. Structure in one part of the data can guide the fitting in another: 
for example, we could smooth the estimates of radial diffusivity, but not across edges which 
emerge in the estimates of axon orientation. We use Markov chain Monte Carlo (MCMC) to sample 
from the posterior distribution of the parameters. 

Results 
The images show the estimates of the restricted fraction, with differing levels of correlation in the 
prior. From top to bottom: no correlation (conventional voxel-wise reconstruction), low correlation 
(some smoothing), high correlation (more smoothing). Even with a high level of smoothing in the 
homogeneous areas, the choice of prior has preserved the edges very well. 

Discussion 
A Bayesian model has been used to regularise estimates of myelin water fraction3. An isotropic 
prior encoded prior expectations of smoothness, with estimation carried out block-wise. Previous 
work on simultaneous estimation of microstructure and the connectome4 estimated the 
microstructural parameters (assumed constant) along tracts (from a pool created by tractography). 

Expressing the parameters as a realisation of an MRF and using MCMC provides a more flexible 
framework. We have illustrated this using the CHARMED model, but the Bayesian framework could 
be used to improve the estimates of other parameters. Working on a local scale with an MRF model 
allows us to make fewer assumptions about the expected variation in microstructure, with the 
ability to jointly estimate directional and microstructural information on a local scale.  

Conclusion 
We have illustrated the benefits of applying Bayesian statistical methods to advanced diffusion 
imaging, using prior information (based on anatomical knowledge) to regularise parameter 
estimates. To the best of our knowledge, this is the first time a Bayesian framework with an MRF 

model has been used with these data.  
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