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Purpose

Advanced diffusion imaging methods specify a model which explains the MR signal loss using a set of parameters (e.g. axon
orientation and diameter). These are generally estimated on a voxel-by-voxel basis, without taking into account the spatial
correlations we know to be present. But from an anatomical perspective, we expect microstructure to vary smoothly within coherent
white matter structures — this knowledge is not currently exploited.

We describe here a novel application of Bayesian statistical modelling, which allows us to exploit spatial correlations in the
underlying physical parameters in order to obtain better estimates of these parameters. By incorporating knowledge of smoothness
at the estimation stage, we exploit more information than if we smooth as a post-processing step.

Methods

We demonstrate our approach using images of an ex-vivo porcine spinal cord as a biological phantom This was scanned on a
7T/30 Bruker Biospec equipped with 400mT/m gradient unit. We acquired data to fit the CHARMED model’ usmg a stimulated echo
EPI pulse sequence with the following parameters: A/5=20/3.2ms; b-values of 170,300,460,670, 1000s/mm? with 16 non-collinear
directions for each shell, with two By measurements.

The cHARMED model describes the signal loss due to diffusion in terms of hindered and restricted components, identified with extra-
and intra-axonal water respectively. In our Bayesian paradigm, we use this model for the likelihood of the data given the
parameters. To this, we add a new prior probability distribution for the parameters. We use a Markov random field (MRF) model,
where we define the prior probability of the parameters in a voxel, given its neighbours.

This framework is extremely flexible. We can encode many different types of information in the prior, including spatial smoothness.
Parameter values with a large ‘distance’ from their neighbours are penalised. We define the distance between the tensors
descrlblng the restricted component using a geodesic distance defined on a Riemannian manifold
of tensors®. The distance between the angular components is (1 -|u-v)), where u and v are the
vectors describing the directions of the restricted components. For the other parameters, we use
the absolute difference in the value.

The penalty does not have to be isotropic — we can allow parameters to differ across edges, but
smooth more homogeneous areas. Structure in one part of the data can guide the fitting in another:
for example, we could smooth the estimates of radial diffusivity, but not across edges which
emerge in the estimates of axon orientation. We use Markov chain Monte Carlo (McMmcC) to sample
from the posterior distribution of the parameters.

Results

The images show the estimates of the restricted fraction, with differing levels of correlation in the
prior. From top to bottom: no correlation (conventional voxel-wise reconstruction), low correlation
(some smoothing), high correlation (more smoothing). Even with a high level of smoothing in the
homogeneous areas, the choice of prior has preserved the edges very well.

Discussion

A Bayesian model has been used to regularise estimates of myelin water fraction®. An isotropic
prior encoded prior expectations of smoothness, with estimation carried out block -wise. Previous
work on simultaneous estimation of microstructure and the connectome® estimated the
microstructural parameters (assumed constant) along tracts (from a pool created by tractography).

Expressing the parameters as a realisation of an MRF and using McMmC provides a more flexible
framework. We have illustrated this using the CHARMED model, but the Bayesian framework could
be used to improve the estimates of other parameters. Working on a local scale with an MRF model
allows us to make fewer assumptions about the expected variation in microstructure, with the
ability to jointly estimate directional and microstructural information on a local scale.

Conclusion

We have illustrated the benefits of applying Bayesian statistical methods to advanced diffusion
imaging, using prior information (based on anatomical knowledge) to regularise parameter
B | estimates. To the best of our knowledge, this is the first time a Bayesian framework with an MRF
0 02 04 06 08 1 model has been used with these data.
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